Анализ строения различных типов тканей животных. Чем отличается эпителиальная ткань от соединительной: описание и отличия. Соединительная ткань животных

МОУ «Гимназия» п.г.т. Сабинского муниципального района Республики Татарстан

Районный семинар «Повышение творческой инициативы учащихся

на уроках биологии путем использования информационных технологий»

«Ткани животных: эпителиальная и соединительная»

Открытый урок по биологии в 6 классе

по учебнику Н.И. Сонина «Живой организм»

2009/2010 учебный год

Цель: изучить особенности строения тканей животного организма

Задачи:

Образовательные:

Сформировать представление о строении тканей животного организма: эпителиальной и соединительной;

Сформировать умение доказывать соответствие строения животных тканей выполняемым функциям;

Развивающие:

Развивать умение сравнивать, анализировать, обобщать, работать с микроскопом и микропрепаратами;

Развитие самоконтроля;

Развивать осознанное отношение к результату своего учебного труда;

Воспитательные:

Воспитывать чувство сотрудничества и взаимопомощи по отношению друг к другу.

Тип урока: комбинированный, лабораторная работа

Методы обучения: частично-поисковый, объяснительно-иллюстративный

Оборудование: учебник, микроскоп, микропрепараты «Эпителиальная ткань», «Костная ткань», «Хрящ», «Кровь», «Жировая ткань», рабочая тетрадь к учебнику, компьютер, мультимедийный проектор, мультимедийная презентация «Ткани животных».

ХОД УРОКА.

    Организационный момент.

    Актуализация знаний и умений.

На прошедшем уроке, мы, рассмотрели основные типы тканей растительного организма.

Фронтальный опрос.

    Дайте определение понятию «ткань»?

    Какие ткани относят к тканям растительного организма?

    Какие функции они выполняют в организме?

Тестовая работа по теме «Ткани растений».

1 вариант.

1. Образовательная ткань обеспечивает:

А) форму растения

Б) рост растения

В) передвижение веществ

Г) придает прочность и упругость

2. Мякоть листа образована:

А) покровной тканью

Б) механической тканью

В) основной тканью

Г) проводящей тканью

3. Функция покровной ткани:

Б) придает опору растениям

4. Проводящие ткани находятся в

А) только в листьях

Б) в зародыше растения, кончике корня

В) в листьях, стебле и корне

Г) скорлупе грецкого ореха

5. Механическая ткань состоит из:

А) живых клеток

Б) утолщенных и одревесневших клеток

В) мертвых клеток

Г) живых и мертвых клеток

2 вариант.

1. Образовательная ткань состоит из:

А) мертвых клеток

Б) мелких, постоянно делящихся клеток

В) живых и мертвых клеток

Г) утолщенных и одревесневших клеток

2. Прочность и упругость придает:

А) покровная ткань

Б) механическая ткань

В) образовательная ткань

Г) проводящая ткань

3. Функция проводящей ткани

А) защита

Б) запас питательных веществ

В) передвижение воды, минеральных и органических веществ.

Г) рост растения

4. Месторасположение основной ткани

А) кончик корня, зародыш растения

Б) мякоть листа и плодов, мягкие части цветка

В) кожица листа, пробковые слои стволов деревьев

Г) корень, стебель и лист

5. Какова функция кожицы листа

А) защита растения от повреждений и неблагоприятных воздействий

Б) придает опору растениям

В) накапливает питательные вещества

Г) придает прочность и упругость

    Изучение нового материала.

Продолжаем изучение темы «Ткани». Рассмотрим основные ткани животного организма. Тема урока: «Ткани животных: эпителиальная и соединительная»

Рассказ учителя.

Ткань - системы клеток, сходных по происхождению, строению и функциям. В состав ткани входят также межклеточные вещества и структуры - продукты клеточной жизнедеятельности. Выделяют 4 типа тканей животных – эпителиальная, соединительная, мышечная и нервная.

Эпителиальная ткань (эпителий) покрывает поверхность тела, выстилает стенки полых внутренних органов, образуя слизистую оболочку, железистую (рабочую) ткань желез внешней и внутрен­ней секреции. Эпителий отделяет организм от внешней среды, выполняет покровную, защитную и выделительную функции. Эпи­телий представляет собой слой клеток, лежащих на базальной мемб­ране, межклеточное вещество почти отсутствует.(слайд 2)

Соединительная ткань состоит из основного вещества - клеток и межклеточного вещества - коллагеновых, эластических и ретику­лярных волокон. Различают собственно соединительную ткань (рыхлую и плотную волокнистую) и ее производные (хрящевую, костную, жировую, кровь и лимфу). Соединительная ткань и ее производные развиваются из мезенхимы. Она выполняет опорную, защитную и питательную (трофическую) функции. Обладая регене­раторной (восстановительной) способностью, соединительная ткань принимает активное участие в заживлении ран, образуя соедини­тельнотканный рубец.

Костная ткань - разновидность соединительной ткани, из которой построены кости - органы, составляющие костный скелет. Костная ткань состоит из взаимодействующих структур: клеток кости, межклеточного органического матрикса кости(органического скелета кости) и основного минерализованного межклеточного вещества. (слайд 3)

Хрящ - один из видов соединительной ткани, отличается плотным упругим межклеточным веществом, образующим вокруг клеток-хондроцитов и групп их особые оболочки, капсулы.(слайд 4)

Кровь - соединительная ткань, наполняющая сердечно-сосудистую систему позвоночных животных, в том числе человека, некоторых беспозвоночных. Состоит из плазмы (межтканевой жидкости), клеток: эритроцитов, лейкоцитов и тромбоцитов. (слайд 5)

Жировая ткань - разновидность соединительной ткани животных организмов, образующаяся из мезенхимы и состоящая из жировых клеток -адипоцитов. Почти всю жировую клетку, специфическая функция которой - накопление и обмен жира, заполняет жировая капля, окруженная ободком цитоплазмы с оттеснённым на периферию клеточным ядром. У позвоночных жировая ткань располагается главным образом под кожей (подкожная клетчатка) и в сальнике, между органами, образуя мягкие упругие прокладки. (слайд 6)

    Лабораторная работа «Изучение микроско­пического строения тканей»

Просмотр готовых микропрепара­тов. Особенности каждого вида ткани. Сравнение изображения под микроскопом с рисунками 7-10 учебника, таблицей «Ткани животных», иллюстрациями в мультимедийной презентации.

Режим просмотра.

Привести микроскоп в рабочее состояние: осветить объект, настроить резкость. Наиболее удобный режим просмотра: оку­ляр 15, объектив 8.

По мере просмотра, формулируя выводы, заполняем таблицу.(слайд 8)

Название ткани

Место расположения

Особенности строения

Выполняемые функции

Эпителиальная

наружная поверхность тела животных;

полости внутренних органов; железы

Клетки очень плотно прилегают друг к другу.

Межклеточное вещество почти отсутствует.

1. Защита от:

высыхания

микробов, механических повреждений.

2. Образование желез

Соединительная

А) костная

Б) хрящевая

Плотное межклеточное вещество

рыхлое межклеточное вещество

1. Опорная

2. Опорная и защитная

В) жировая

Жировые прослойки

3. Защитная

Кровеносные сосуды

жидкое межклеточное вещество.

Общее:

Клетки удалены друг от друга; межклеточного вещества много .

4. Транспортная

    Закрепление изученного материала.

Вопросы.

1.Все живые организмы образованы тканями?

2. Чем соединены клетки в тканях?

3. Как устроена эпителиальная ткань?

4. Какие функции выполняет эпителиальная ткань?

5. Какие функции выполняет соединительная ткань?

6. Какие ткани относятся к соединительной?

7. Что общего в соединительных тканях?

Работа с утверждениями учебника «Какие утверждения верны?»

    Итог урока. Рефлексия.

Какие открытия вы для себя сделали на сегодняшнем уроке? Как вы думаете, знания которые вы получили на уроке, пригодятся в будущем?

Поведение: эволюционный подход Курчанов Николай Анатольевич

7.7. Эпителиальные и соединительные ткани

Эпителиальная ткань – это разновидность тканей животных, производная всех трех зародышевых слоев. Всевозможные виды эпителиев объединяет прочное соединение клеток в единый пласт, расположенный на базальной мембране , и обусловленная этим полярность пласта. В организме эпителии выполняют барьерную, выделительную, секреторную и другие функции. Традиционно их делят на две группы: покровные и железистые.

Первая группа необыкновенно разнообразна и включает ткани, покрывающие тело и полостные органы (кишечник, воздухоносные пути, протоки выделительной и половой систем). Вторая группа специализируется на секреторной функции, что обусловливает у клеток высокую степень развития ЭР и АГ, задействованных в секреторном процессе.

Секреторные клетки обычно входят в состав многоклеточных желез, которые делят на железы внешней секреции, или экзокринные (выделяют секрет через протоки наружу), и железы внутренней секреции, или эндокринные (выделяют секрет в кровь). Функционирование эндокринных желез в огромной степени связано с поведением. Их деятельность изучает наука эндокринология, которая все больше приобретает общетеоретическое значение и будет рассмотрена нами в специальном разделе.

Соединительные ткани (или ткани внутренней среды ) представляют собой наиболее разнообразный тип тканей животных. Вместе с тем, в отличие от эпителиальных и мышечных тканей, все соединительные ткани имеют единое происхождение из мезенхимы (зародышевая ткань мезодермы). Несмотря на морфологическое разнообразие, все они состоят из клеток и неклеточного вещества. Как и эпителии, соединительные ткани традиционно также делят на две группы: стромальные ткани и свободные клеточные элементы (СКЭ).

Первая группа включает многочисленные ткани, выполняющие трофическую и опорную функции. Их структурной особенностью является наличие волокон двух типов в межклеточном веществе: коллагеновых и эластичных. Само межклеточное вещество состоит преимущественно из различных мукополисахаридов . Разное соотношение этих составляющих обусловливает разную степень твердости, механической прочности и эластичности у различных видов стромальных тканей. К ним относятся: ретикулярная ткань, рыхлая соединительная ткань, плотная соединительная ткань, жировая ткань, хрящ, кость. Некоторые из этих тканей участвуют в процессе движения, которое является внешним выражением поведения: костная и хрящевая ткани служат основой скелета, а плотная соединительная ткань входит в состав сухожилий и связок, прикрепляющих мышцы к скелету. Кроме того, она образует оболочки для мышц, нервов и нервных ганглиев.

Система СКЭ осуществляет функции поддержания гомеостаза, транспорта веществ по организму и защиты его от инфекции. Ее клетки свободно циркулируют по трем жидкостным средам организма (тканевая жидкость, кровь, лимфа), в связи с чем очертить границы конкретной ткани весьма сложно. В традиции западной науки принято выделять кровь в особый, 5-й тип тканей. Учитывая резкие структурно-функциональные отличия ее от других видов соединительных тканей, такая классификация кажется оправданной. Но СКЭ могут проходить через стенки сосудов и интегрироваться в соединительной ткани. Более того, некоторые СКЭ выполняют свои основные функции только после интеграции, а кровь для них является просто системой транспорта. Поэтому логичнее рассматривать систему СКЭ как жидкую соединительную ткань, у которой отсутствуют волокна в межклеточном веществе.

Среди СКЭ млекопитающих и человека выделяют семь разновидностей: эритроциты, кровяные пластинки, эозинофилы, базофилы, нейтрофилы, моноциты и лимфоциты . Первые два вида являются безъядерными, причем пластинки представляют собой «осколки» цитоплазмы. Пять последних клеточных форм обычно объединяют в группу «лейкоциты», но это деление является скорее исторической традицией. Изучение процесса кроветворения (гемопоэза) показало, что его первым этапом является дифференцировка предшественников лимфоцитов от предшественников всех остальных видов СКЭ.

Самые крупные клетки крови – моноциты . Они способны к фагоцитозу и выполняют защитные функции. Моноциты могут покидать кровяное русло, проникая в разные ткани. Там они дают начало самым разнообразным клеткам, которые объединяют под общим названием «макрофаги». К ним относятся гистиоциты соединительной ткани, остеокласты костной ткани, клетки микроглии нервной ткани и многие другие.

Лимфоциты включают в себя популяции Т-лимфоцитов и В-лимфоцитов , которые определяют клеточный и гуморальный иммунитет организма. Изучением иммунитета занимается иммунология, которая, как уже говорилось, становится одной из ведущих биологических наук. Ее фундаментальные разработки приобретают общетеоретическое значение. Нет сомнений, что они помогут раскрыть и многие тайны поведения.

Тесную взаимосвязь между иммунологией и нейрофизиологией демонстрирует феномен гематоэнцефалического барьера – уникальной структуры мозга. Его основу составляют клетки эндотелия, образующего стенки капилляров. Эндотелий разные авторы относят либо к эпителиальным, либо к соединительным тканям, в зависимости от взятых за основу принципов классификации. Обычно эндотелий пропускает различные вещества, включая белки, в тканевую жидкость, откуда они удаляются по лимфатическим капиллярам. В ЦНС, где нет лимфатических капилляров, эндотелиальные клетки соединены плотным, непрерывным слоем. Этот слой окружен слоем толстой базальной мембраны, а она – слоем астроцитов .

Гематоэнцефалический барьер служит непреодолимым препятствием для крупных молекул. Многие микробы, вирусы, токсины, лекарственные препараты не могут его преодолеть, что объясняет устойчивость мозга к инфекциям. Исключение составляет гипоталамус – наиболее уязвимое место мозга.

Гематоэнцефалический барьер изолирует мозг, имеющий огромное количество специфических компонентов, от собственной иммунной системы. Некоторые авторы считают, что для организма в процессе эволюции оказалось проще отгородить мозг, чем усложнять механизм опознания «свое – чужое» (Савельев С. В., 2005). Однако есть данные, которые не подтверждают столь однозначный вывод. Механизмы взаимоотношений между нервной и иммунной системами еще и не полностью поняты.

Структурно-функциональные особенности различных тканей и их клеток подробно изучаются в курсах цитологии и гистологии. Краткий обзор многообразия клеток, формирующих разные ткани, был нам необходим для лучшего понимания клеточных механизмов поведения. Можно было заметить, что в реализации поведения принимают участие все виды тканей. Сигнальная функция нервных клеток играет здесь определяющую интегративную роль.

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

Глава 2 КЛЕТКА – ОСНОВНАЯ ЕДИНИЦА НЕРВНОЙ ТКАНИ Головной мозг человека состоит из огромного количества разнообразных клеток. Клетка – основная единица биологического организма. Наиболее просто организованные животные могут иметь всего одну клетку. Сложные организмы

Из книги Беседы о новой иммунологии автора Петров Рэм Викторович

Если в пересаженной ткани есть размножающиеся клетки, лимфоциты выбивают их в первую очередь. - Первооткрыватели активности лимфоцитов против чужеродных клеток составляют неплохую интернациональную бригаду. - Да, Байн из Канады, Хеллстром из Швеции, Розенау и

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

3.2. Виды и функциональные особенности мышечной ткани детей и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Внутренняя рыба [История человеческого тела с древнейших времен до наших дней] автора Шубин Нил

Из книги Биофизика познает рак автора Акоев Инал Георгиевич

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Ткани Глаза животных бывают двух основных разновидностей: одна свойственна многим беспозвоночным, а другая - позвоночным, таким как рыбы или люди. Главное отличие между ними состоит в том, что в них по-разному увеличивается светоулавливающая поверхность чувствительной

Из книги автора

Из книги автора

Глава 32. Особенности метаболизма в нервной ткани Человеческий мозг – это самая сложная из всех известных живых структур. Нервной системе и, в первую очередь, головному мозгу принадлежит важнейшая роль в координации поведенческих, биохимических, физиологических

Из книги автора

Энергетический обмен в нервной ткани Характерными чертами энергетического обмена в ткани головного мозга являются:1. Высокая его интенсивность в сравнении с другими тканями.2. Большая скорость потребления кислорода и глюкозы из крови. Головной мозг человека, на долю

Из книги автора

Липидный обмен в нервной ткани Липидный состав головного мозга уникален не только по высокой концентрации общих липидов, но и по содержанию здесь их отдельных фракций. Почти все липиды головного мозга представлены тремя главными фракциями: глицерофосфолипидами,

Из книги автора

Глава 33. Биохимия мышечной ткани Подвижность является характерным свойством всех форм жизни - расхождение хромосом в митотическом аппарате клеток, воздушно-винтовые движения жгутиков бактерий, крыльев птиц, точные движения человеческой руки, мощная работа мышц ног. Все

Из книги автора

Белки мышечной ткани Выделяют три группы белков:1. миофибриллярные белки – 45 %;2. саркоплазматические белки – 35 %;3. белки стромы – 20 %.Миофибриллярные белки.К этой группе относятся:1. миозин;2. актин;3. актомиозин;а также так называемые регуляторные белки:4. тропомиозин;5.

Из книги автора

Глава 34. Биохимия соединительной ткани Соединительная ткань составляет около половины от сухой массы тела. Все разновидности соединительной ткани, несмотря на их морфологические различия, построены по общим принципам:1. Содержит мало клеток в сравнении с другими

Основные типы тканей животных:
■ эпителиальная (покровная);
■ соединительная;
■ мышечная;
■ нервная.

Эпителиальная ткань

Эпителиальная ткань , или эпителий , — вид покровной ткани у животных, образующей внешние покровы организма, железы, а также выстилающей внутренние стенки полых органов тела.

❖ Функции эпителия:

■ защита нижележащих структур от механических повреждений, воздействия вредных веществ и проникновения инфекций;

■ участие в обмене веществ (обеспечивает всасывание и выделение веществ);

■ участие в газообмене (у многих групп животных осуществляет дыхание через всю поверхность тела);

■ рецепторная (чувствительный эпителий может содержать клетки с рецепторами, воспринимающими внешнее раздражение, например, запахи);

■ секреторная (к примеру, слизь, выделяемая бокаловидными клетками цилиндрического эпителия желудка, защищает его от воздействия желудочного сока).

Эпителий формируется, как правило, из экто- и энтодермы и обладает высокой способностью к восстановлению. Он образует один или несколько слоев клеток, лежащих на тонкой базальной мембране , лишенной кровеносных сосудов. Клетки плотно прилегают друг к другу, образуя сплошной пласт; межклеточного вещества почти нет. Питание эпителия осуществляется за счет подлежащей соединительной ткани.

Базальная мембрана — слой межклеточного вещества (белков и полисахаридов), располагающихся на границах между различными тканями.

Классификация эпителия по форме клеток:

плоский (состоит из клеток многоугольной формы, образует поверхностный слой кожи и выстилает сосуды кровеносной и лимфатической систем, легочные альвеолы, полости тела);

кубический (состоит из кубовидных клеток; присутствует в почечных канальцах, сетчатке глаза позвоночных, выстилке поджелудочной и слюнных желез, отмечается в наружных эпителиях беспозвоночных);

цилиндрический , или столбчатый (его клетки имеют продолговатую форму и напоминают столбики или колонны; этот эпителий выстилает кишечный тракт животных, образует наружный эпителий многих беспозвоночных);

мерцательный , или ресничный (разновидность цилиндрического), на поверхности столбчатых клеток которого находятся многочисленные реснички или одиночные жгутики (выстилает дыхательные пути, яйцеводы, желудочки головного мозга, спинномозговой канал).

Классификация поверхностного эпителия в зависимости от количества слоев клеток:

однослойный (его клетки образуют только один слой); характерен для беспозвоночных и низших хордовых. У позвоночных он выстилает кровеносные и лимфатические сосуды, полость сердца, внутреннюю поверхность роговицы глаза и др. (плоский эпителий), сосудистые сплетения мозга, канальцы почек (кубический эпителий), желчный пузырь, сосочковые протоки почек (столбчатый эпителий);

многослойный (его клетки состоят из нескольких слоев); образует наружные поверхности кожи, некоторые слизистые оболочки (ротовую полость, глотку, некоторые части пищевода -столбчатый и плоский эпителий), протоки слюнных и млечных желез, влагалище, потовые железы (кубический эпителий) и др.

Эпидермис наружный слой кожи, непосредственно контактирующий с окружающей средой и состоящий из живых и мертвых, утолщенных, ороговевших и постоянно слущивающихся клеток, которые заменяются новыми благодаря регенерации — клеточному делению, происходящему в этой ткани очень быстро.

■ У человека клетки эпидермиса обновляются каждые 7-10 дней.

Кожа — наружный покров тела наземных позвоночных (рептилий, птиц, млекопитающих), выполняющий функцию поддержания постоянства температуры тела.

Бокаловидные клетки — одноклеточные железы, имеющие характерную форму бокала, разбросанные среди эпителиальных клеток некоторых органов (к примеру, слизь, выделяемая некоторыми бокаловидными клетками, необходима сухопутным организмам для дыхания и предохранения от высыхания).

Железа — орган животного или человека, вырабатывающий особые вещества — секреты (молоко, пот, пищеварительные ферменты и др.), которые участвуют в обмене веществ (примеры: слюнные, потовые, молочные, сальные железы, железы внутренней секреции — щитовидная, поджелудочная и др.).

Чувствительный эпителий — эпителий, содержащий клетки, воспринимающие внешние раздражения (пример: эпителий носовой полости, который имеет рецепторы, воспринимающие запахи).

Железистый эпителий — особый вид эпителиальной ткани у позвоночных, состоящий из скопления клеток, образующих многоклеточную железу .

Типы секреторных клеток железистого эпителия:

экзокринные клетки , образующие экзокринные железы (печень, поджелудочную железу, железы желудка и кишечника, слюнные железы), выделяют секрет на свободную поверхность эпителия через выводные протоки желез;

эндокринные клетки , образующие эндокринные железы (щитовидную железу, гипофиз, надпочечники и др.), выделяют секреты непосредственно в межклеточное пространство, пронизанное кровеносными сосудами, откуда они поступают в кровь и лимфу.

Соединительная ткань

Соединительная ткань — главная опорная ткань организма, связывающая между собой остальные ткани и органы и образующая внутренний скелет многих животных. Соединительная ткань образуется из мезодермы.

К соединительной относят ткани:

■ костей, хрящей, связок, сухожилий, дентина (расположенного между зубной эмалью и пульпарной полостью зуба);

■ красного костного мозга;

■ крови и лимфы, а также ткань, окружающую кровеносные сосуды и нервы в местах их входа или выхода в тот или иной орган;

■ подкожной жировой клетчатки и т.д.

❖ Функции соединительной ткани:
■ опорная (главная функция),
■ защитная (фагоцитоз),
■ обменная (перенос веществ по телу),
■ питательная (трофическая),
■ кроветворная (красный костный мозг),
■ восстановительная (регенерация).

Особенности соединительной ткани: различные ее виды имеют разное строение, но во всех случаях
■ ткань имеет сложную структуру;
■ она обладает очень высокой способностью к восстановлению;
■ в ее состав могут входить разнообразные клетки (фибробластыг, фиброциты, тучные, жировые и пигментные клетки, плазмоциты , лимфоциты, зернистые лейкоциты, макрофаги и др.), расположенные рыхло, на значительном расстоянии друг от друга;

■хорошо выражено бесструктурное (аморфное) мягкое межклеточное вещество , отделяющее клетки одну от другой, которое может включать волокна белковой природы (коллагеновые., эластические и ретикулярные ), различные кислоты и сульфаты и неживые продукты жизнедеятельности клеток. Коллагеновые волокна — гибкие, особо прочные, нерастягивающиеся волокна, образованные из белка коллагена, молекулярные цепи которого имеют спиральное строение и могут скручиваться и объединяться друг с другом; легко поддаются температурной денатурации.

Эластические волокна — волокна, образованные в основном белком эластином , способные растягиваться примерно в 1,5 раза (после чего возвращаются в исходное состояние) и выполняющие опорную функцию. Эластические волокна переплетаются между собой, образуя сети и мембраны.

Ретикулярные волокна — это тонкие, разветвленные, мапорас-тяжимые, переплетающиеся между собой волокна, образующие мелкопетлистую сеть, в ячейках которой расположены клетки. Эти волокна образуют каркасы органов кроветворения и иммунной системы, печени, поджелудочной железы и некоторых других органов, окружают кровеносные и лимфатические сосуды и т.д.

Фибробласты — основные специализированные фиксированные клетки соединительной ткани, синтезирующие и секретирующие основные компоненты межклеточного вещества, а также вещества, из которых образуются коллагеновые и эластические волокна.

Фиброциты — многоотростча-тые веретенообразные клетки, в которые по мере старения превращаются фибробласты; фиброциты синтезируют межклеточное вещество очень слабо, но образуют трехмерную сеть, в которой удерживаются другие клетки.

Тучные клетки — это клетки, очень богатые крупными (до 2 мкм) гранулами, содержащими биологически активные вещества.

Ретикулярные клетки — удлиненные многоотростчатые клетки, которые, соединяясь своими отростками, образуют сеть. При неблагоприятных условиях (инфекция и пр.) они округляются и становятся способными к фагоцитозу (захвату и поглощению крупных частиц).

Жировые клетки бывают двух типов — белые и бурые. Белые жировые клетки имеют шаровидную форму и почти полностью заполнены жиром; они осуществляют синтез и внутриклеточное накопление липидов в качестве запасного вещества. Бурые жировые клетки содержат капли жира и большое количество митохондрий.

Плазмоциты — клетки, синтезирующие белки и располагающиеся вблизи мелких кровеносных сосудов в органах иммунной системы, в слизистой оболочке пищеварительной и дыхательной систем. Они вырабатывают антитела и тем самым играют важнейшую роль в защите организма.

Классификация соединительных тканей в зависимости от состава клеток, типа и свойств межклеточного вещества и связанных с этим функций в организме: рыхлая волокнистая соединительная ткань, плотные волокнистая, хрящевая и костная соединительные ткани и кровь.

Рыхлая волокнистая соединительная ткань — очень гибкая и эластичная ткань, состоящая из редко расположенных клеток разных типов (много клеток звездчатой формы), переплетающихся ретикулярных или коллагеновых волокон и жидкого межклеточного вещества, заполняющего промежутки между клетками и волокнами. Образует строму — каркас органов и наружную оболочку внутренних органов; размещается в прослойках между органами, соединяет кожу с мышцами и выполняет защитную, запасающую и питающую функции.

Плотная волокнистая соединительная ткань состоит в основном из пучков коллагеновых волокон, расположенных плотно и параллельно друг другу или переплетающихся в разных направлениях; свободных клеток и аморфного вещества немного. Главная функция плотной волокнистой соединительной ткани — опорная. Эта ткань образует связки, сухожилия, надкостницу, глубокие слои кожи (дерму) животных и человека, выстилает изнутри череп и позвоночный канал и т.д.

Хрящевая ткань — это упругая ткань, состоящая из круглых или овальных клеток (хондроцитов ), лежащих в капсулах (от одной до четырех штук в каждой капсуле) и погруженных в хорошо развитое, плотное, но эластичное основное межклеточное вещество, содержащее тонкие волокна. Хрящевая ткань покрывает суставные поверхности костей, образует хрящевую часть ребер, носа, ушной раковины, гортани, трахеи, бронхов и межпозвоночные диски (в последних она играет роль амортизатора).

Функции хрящевой ткани — механическая и соединительная.

В зависимости от количества межклеточного вещества и типа преобладающих волокон выделяют гиалиновый, эластический и волокнистый хрящи.

В гиалиновом хряще (он самый распространенный; выстилает суставные головки и впадины суставов) клетки располагаются группами, основное вещество хорошо развито, преобладают коллагеновые волокна.

В эластическом хряще (образует ушную раковину) преобладают эластические волокна.

Волокнистый хрящ (находится в межпозвонковых дисках) содержит мало клеток и основного межклеточного вещества; в нем преобладают коллагеновые волокна.

Костная ткань образуется из эмбриональной соединительной ткани или из хряща и отличается тем, что в ее межклеточном веществе откладываются неорганические вещества (кальциевые соли и др.), придающие ткани твердость и хрупкость. Характерна для позвоночных животных и человека, у которых она образует кости.

Главные функции костной ткани — опорная и защитная; эта ткань также участвует в обмене минеральных веществ и в кроветворении (красный костный мозг).

Типы костных клеток: остеобласты, остеоциты и остеокласты (участвуют в рассасывании старых остеоцитов).

Остеобласты — многоугольные отростчатые молодые клетки, богатые элементами зернистой эндоплазматической сети, развитым комплексом Гольджи и др. Остеобласты синтезируют органические компоненты межклеточного вещества (матрикс).

Остеоциты — зрелые, много-отростчатые веретенообразные клетки с крупным ядром и малым количеством органелл. Не делятся; при возникновении необходимости в структурных изменениях костей активизируются, дифференцируются и превращаются в остеобласты.

Строение костной ткани.

Костные клетки соединяются между собой клеточными отростками. Плотное основное межклеточное вещество этой ткани содержит кристаллы кальциевых солей фосфорной и угольной кислот, ионы нитратов и карбонатов, придающие ткани твердость и хрупкость, а также коллагеновые волокна и белково-полисахаридные комплексы, придающие ткани упругость и эластичность (на 30% костная ткань состоит из органических соединений и на 70% — из неорганических: кальция (костная ткань — депо этого элемента), фосфора, магния и др.). В костной ткани имеются гаверсовы каналы -трубчатые полости, в которых проходят кровеносные сосуды и нервы.

Полностью сформированная костная ткань состоит из костных пластинок , имеющих разную толщину. В отдельной пластинке коллагеновые волокна располагаются в одном направлении, но в соседних пластинках они расположены под углом друг к другу, что придает костной ткани дополнительную прочность.

В зависимости от расположения костных пластин различают компактное и губчатое костное вещество .

В компактном веществе костные пластинки расположены концентрическими кругами около гаверсовых каналов, образуя остеон . Между остеонами находятся вставочные пластинки .

Губчатое вещество состоит из тонких, перекрещиваются между собой костных пластинок и перекладин, образующих множество ячеек. Направление перекладин совпадает с линиями основных напряжений, поэтому они образуют сводчатые конструкции.

Все кости сверху покрыты плотной соединительной тканью —надкостницей , обеспечивающей питание и рост костей в толщину.

Жировая ткань образована жировыми клетками (подробнее выше) и выполняет трофическую (питательную), формообразующую, запасающую и терморегулирующую функции. В зависимости от типа жировых клеток подразделяется на белую (выполняет в основном запасающую функцию) и бурую (ее главная функция — производство тепла для поддержания температуры тела животных во время спячки и температуры новорожденных млекопитающих).

Ретикулярная соединительная ткань — разновидность соединительной ткани, образующая, в частности, красный костный мозг — основное место кроветворения — и лимфатические узлы .

Мышечная ткань

Мышечная ткань — ткань, составляющая основную массу мышц животных и человека и выполняющая двигательную функцию. Характеризуется способностью к сокращению (под действием различных раздражителей) и последующему восстановлению длины; входит в состав опорно-двигательного аппарата, стенок полых внутренних органов, сосудов.

Особенности мышечной ткани:
■ она состоит из отдельных мышечных волокон и обладает свойствами:
возбудимости (способна воспринимать раздражения и отвечать на них);
сократимости (волокна могут укорачиваться и удлиняться),
проводимости (способна проводить возбуждение);
■ отдельные мышечные волокна, пучки и мышцы одеты оболочкой из соединительной ткани, в которой проходят кровеносные сосуды и нервы. Цвет мышц зависит от количества присутствующего в них белка миоглобина .

Мышечное волокно образовано тончайшими сократительными волоконцами — миофибриллами , каждое из которых представляет собой регулярную систему нитей молекул белков миозина (более толстые) и актина (более тонкие). Мышечное волокно покрыто возбудимой плазматической мембраной, по своим электрическим свойствам сходной с мембраной нервных клеток.

Источники энергии для мышечного сокращения: АТФ (основной), а также креатинфосфат или аргининфосфат (при энергичном мышечном сокращении), запасы углеводов в форме гликогена и жирные кислоты (при интенсивной мышечной работе).

Типы мышечной ткани:

поперечнополосатая (скелетная) ; образует скелетную мускулатуру, мышцы рта, языка, глотки, верхней части пищевода, гортани, диафрагмы, мимические мышцы лица;

сердечная ; образует основную массу ткани сердца;

гладкая ; у низших животных образует практически всю массу их мышц, у позвоночных животных входит в состав стенок сосудов и полых внутренних органов.

Скелетные (поперечнополосатые) мышцы — мышцы, прикрепляющиеся к костям скелета и обеспечивающие движение туловища и конечностей). Состоят из пучков, образованных множеством длинных (1-40 мм и более) многоядерных мышечных волокон диаметром 0,01-0,1 мм, имеющих поперечную исчерченность (которая обусловлена регулярно расположенными друг относительно друга тонкими мио-фибриллами).

Особенности поперечнополосатой мышечной ткани:

■ она иннервируется спинномозговыми нервами (через центральную нервную систему),

■ способна к быстрым и сильным сокращениям,

■ но в ней быстро развивается утомление, и для ее работы зребуется много энергии.

Сердечная мышца образует основную массу ткани сердца и состоит из поперечно исчерченных миофибрилл, но отличается от скелетной мышцы структурой: волокна у нее расположены не параллельным пучком, а ветвятся, причем соседние волокна соединяются друг с другом конец в конец, вследствие чего все волокна сердечной мышцы образуют единую сеть. Каждое волокно сердечной мышцы заключено в отдельную мембрану, а между волокнами, соединенными своими концами, образуется множество особых щелевых контактов (блестящих полосок), позволяющих нервным импульсам поступать от одного волокна к другому.

Особенности сердечной мышечной ткани:
■ ее клетки содержат большое число митохондрий;
■ она обладает автоматией : способна генерировать сократительные импульсы без участия центральной нервной системы;
■ сокращается непроизвольно и быстро;
■ обладает низкой утомляемостью;
■ сокращение или расслабление сердечной мышцы на одном участке быстро распространяется по всей мышечной массе, обеспечивая одновременность процесса;

Гладкая мышечная ткань — разновидность мышечной ткани, характеризующаяся медленным сокращением и медленным расслаблением и образованная клетками веретенообразной формы (иногда разветвленными) длиной около 0,1 мм, с одним ядром в центре, в цитоплазме которых находятся изолированные миофибриллы. В гладкой мышечной ткани имеются все три вида сократительных белков — актин, миозин и тропомиозин. Гладкие мышцы лишены поперечной исчерченности, так как у них отсутствует упорядоченное расположение нитей актина и миозина.

Особенности гладкой мышечной ткани:
■ она иннервируется вегетативной нервной системой;
■ сокращается непроизвольно, медленно (время сокращения — от нескольких секунд до нескольких минут), с небольшой силой;
■ может долго оставаться в сокращенном состоянии;
■ медленно утомляется.

У низших (беспозвоночных) животных гладкая мышечная ткань образует всю массу их мышц (исключение — двигательная мускулатура членистоногих, некоторых моллюсков и др.). У позвоночных гладкие мышцы образуют мышечные слои внутренних органов (пищеварительного тракта, кровеносных сосудов, дыхательных путей, матки, мочевого пузыря и др.). Гладкая мускулатура иннервируется вегетативной нервной системой.

Нервная ткань

Нервная ткань — ткань животных и человека, состоящая из нервных клеток — нейронов (главных функциональных элементов ткани) — и находящихся между ними клеток нейроглии (вспомогательных клеток, выполняющих питательную, опорную и защитную функции). Нервная ткань образует нервные узлы, нервы, головной и спинной мозг.

❖ Основные свойства нервной ткани:
возбудимость (она способна воспринимать раздражения и отвечать на них);
проводимость (способна проводить возбуждение).

Функции нервной ткани — рецепторная и проводниковая: восприятие, переработка, хранение и передача информации, поступающей как из окружающей среды, так и изнутри организма.

❖ Нейрон — нервная клетка, основная структурная и функциональная единица нервной ткани; образуется из эктодермы.

Строение нейрона. Нейрон состоит из тела звездчатой или веретеновидной формы с одним ядром, нескольких коротких ветвящихся отростков — дендритов — и одного длинного отростка —аксона . Тело нейрона и его отростки пронизывает густая сеть из тонких нитей — нейрофибрилл ; в его теле также имеются скопления особого вещества, богатого РНК. Между собой различные нейроны связаны межклеточными контактами — синапсами .

Скопления тел нейронов образуют нервные узлы — ганглии -и нервные центры серого вещества головного и спинного мозга, отростки нейронов образуют нервные волокна, нервы и белое вещество мозга.

Основная функция нейрона — получение, переработка и передача возбуждения (т.е. информации, закодированной в виде электрических или химических сигналов) другим нейронам или клеткам других тканей. Нейрон способен пропускать возбуждение только в одном направлении — от дендрита к телу клетки.

■ Нейроны обладают секреторной активностью: могут выделять медиаторы и гормоны .

❖ Классификация нейронов в зависимости от их функций:

чувствительные , или афферентные, нейроны передают возбуждение, вызванное внешним раздражением, от периферийных органов тела к нервным центрам;

двигательные , или эфферентные, нейроны передают двигательные или секреторные импульсы от нервных центров к органам тела;

вставочные , или смешанные, нейроны осуществляют связь между чувствительными и двигательными нейронами; они обрабатывают информацию, поступившую от органов чувств по чувствительным нервам, переключают импульс возбуждения на нужный двигательный нейрон и передают соответствующую информацию в высшие отделы нервной системы.

Классификация нейронов по числу отростков: униполярные (ганглии беспозвоночных), биполярные , псевдоуниполярные и мультиполярные .

Дендриты — короткие, сильно разветвленные отростки нейронов, обеспечивающие восприятие и проведение нервных импульсов к телу нейрона. Не имеют миелиновой оболочки и синаптических пузырьков.

Аксон — покрытый миелиновой оболочкой длинный тонкий отросток нейрона, по которому возбуждение передается от данного нейрона другим нейронам или клеткам других тканей. Аксоны могут объединяться в тонкие пучки, а те в свою очередь — в более толстый пучок, покпытый обшей оболочкой. — нерв.

Синапс — специализированный контакт между нервными клетками или нервными клетками и клетками иннервируемых тканей и органов, через который передается нервный импульс. Образован двумя мембранами с узкой щелью между ними. Одна мембрана принадлежит нервной клетке, посылающей сигнал, другая мембрана - клетке, принимающей сигнал. Передача нервного импульса происходит с помощью химических веществ - медиаторов, синтезируемых в передающей нервной клетке при поступлении электрического сигнала.

Медиатор — физиологически активное вещество (ацетилхолин, норадреналин и др.), синтезируемое в нейронах, накапливаемое в специальных пузырьках синапсов и обеспечивающее передачу возбуждения через синапс с одного нейрона на другой или на клетку другой ткани. Освобождается путем экзоцитоза из окончания аксона возбужденной (передающей) нервной клетки, изменяет проницаемость плазматической мембраны принимающей нервной клетки и вызывает появление на ней потенциала возбуждения.

Глиальные клетки (нейроглия) — клетки нервной ткани, не способные проводить возбуждение в виде нервных импульсов, служащие для переноса веществ из крови в нервные клетки и обратно (питательная функция), образующие миелиновые оболочки, а также выполняющие опорную, защитную, секреторную и другие функции. Образуются из мезодермы. Способны делиться.

Ганглий — группа нервных клеток (нейронов), осуществляющая переработку и интеграцию нервных импульсов.

Кровь, тканевая жидкость и лимфа и их особенности у человека

Кровь — один из видов соединительной ткани; циркулирует в кровеносной системе; состоит из жидкой среды — плазмы (55-60% объема) — и взвешенных в ней клеток — форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов ).

■ Состав и количество крови у разных организмов различны. У человека кровь составляет около 8% от общей массы тела (при массе 80 кг объем крови — около 6,5 л).

■ Большая часть имеющейся в организме крови циркулирует по организму, остальная ее часть находится в депо (легких, печени и др.) и пополняет кровоток во время интенсивной мышечной работы и при кровопотерях.

■ Кровь является основой для образования других жидкостей внутренней среды организма (межклеточной жидкости и лимфы).

❖ Основные функции крови:

■ дыхательная (перенос кислорода от органов дыхания к другим органам и тканям организма и перенос двуокиси углерода от тканей к органам дыхания);

■ питательная (перенос питательных веществ от пищеварительной системы к тканям);

■ выделительная (перенос продуктов обмена веществ от тканей к органам выделения);

■ защитная (захват и переваривание чужеродных для организма частиц и микроорганизмов, образование антител, способность к свертыванию при кровотечениях);

■ регуляторная (перенос гормонов от желез внутренней секреции к тканям);

■ терморегуляторная (путем регуляции тока крови через капилляры кожи; основана на высокой теплоемкости и теплопроводности крови);

■ гомеостатическая (участвует в поддержании постоянства внутренней среды организма).

Плазма — бледно-желтая жидкость, состоящая из воды и растворенных и взвешенных в ней веществ (в плазме человека около 90% воды, 9% белков и 0,87% минеральных солей и т.д.); осуществляет перенос различных веществ и клеток по организму. В частности, она переносит около 90% двуокиси углерода в виде карбонатных соединений.

Основные компоненты плазмы:
■ белки фибриноген и протромбин необходимы для обеспечения нормальной свертываемости крови;
■ белск альбумин придает крови вязкость и связывает присутствующий в ней кальций;
■ α —глобулин связывает тироксин и билирубин;
■ β —глобулин связывает железо, холестерол и витамины A, D и К;
■ γ —глобулины (называемые антителами ) связывают антигены и играют важную роль в иммунологических реакциях организма. Плазма переносит около 90% двуокиси углерода в виде карбонатных соединений.

Сыворотка — это плазма без фибриногена (не свертывается).

Эритроциты — красные клетки крови у позвоночных и некоторых беспозвоночных животных (иглокожих), содержащие гемоглобин и фермент карбоангидразу и участвующие в транспорте соответственно кислорода и углекислого газа по организму и в поддержании уровня pH крови посредством гемоглобинового буфера; определяют цвет крови.

Количество эритроцитов в одном кубическом миллиметре крови у человека составляет около 4,5 млн. (у женщин) и 5 млн. (у мужчин) и зависит от возраста и состояния здоровья; всего в крови человека насчитывается в среднем 23 трлн, эритроцитов.

❖ Особенности строения эритроцитов:
■ у человека они имеют форму двояковогнутых дисков диаметром около 7-8 мкм (немного меньше диаметра самых узких капилляров);
■ их клетки не имеют ядра’,
■ мембрана клеток эластична и легко деформируется;
■ клетки содержат гемоглобин — специфический белок, связанный с атомом железа.

Образование эритроцитов: эритроциты образуются в красном костном мозге плоских костей грудины, черепа, ребер, позвонков, ключиц и лопаток, головок длинных трубчатых костей; у эмбриона с еще не сформировавшимися костями эритроциты образуются в печени и селезенке. Скорости образования и разрушения эритроцитов в организме обычно одинаковы и постоянны (у человека — примерно 115 млн. клеток в минуту), но в условиях низкого содержания кислорода скорость образования эритроцитов возрастает (на этом основан механизм адаптации млекопитающих к пониженному содержанию кислорода в высокогорье).

Разрушение эритроцитов: эритроциты разрушаются в печени или селезенке; их белковые компоненты расщепляются на аминокислоты, а входящее в состав гема железо удерживается печенью, хранится в ней в составе белка ферритина и может использоваться при образовании новых эритроцитов и при синтезе цитохромов. Остальная часть гемоглобина расщепляется с образованием пигментов билирубина и биливердина, которые вместе с желчью выводятся в кишечник и придают окраску каловым массам.

Гемоглобин — дыхательный пигмент, содержащийся в крови некоторых животных и человека; представляет собой комплекс из сложных белков и гема (небелкового компонента гемоглобина), в состав которого входит железо. Основная функция - перенос кислорода по организму. В участках с высокой концентрацией О 2 (например, в легких у наземных животных или в жабрах рыб) гемоглобин связывается с кислородом (превращаясь в оксигемоглобин) и отдает его в участках с низкой концентрацией О 2 (в тканях).

Карбоангидраза — фермент, обеспечивающий транспорт углекислого газа по кровеносной системе.

Анемия (или малокровие ) — состояние организма, при котором уменьшается число эритроцитов в крови или снижается содержание в них гемоглобина, что приводит к кислородной недостаточности и, как следствие, к снижению интенсивности синтеза АТФ.

Лейкоциты , или белые кровяные клетки , — бесцветные клетки крови, способные к захватыванию (фагоцитозу) и перевариванию чужеродных для организма белков, частиц и болезнетворных микроорганизмов, а также к образованию антител. Играют важную роль в защите организма от болезней, обеспечивают выработку иммунитета.

❖ Особенности строения лейкоцитов:
■ по размерам превосходят эритроциты;
■ не имеют постоянной формы;
■ клетки имеют ядро;
■ способны к делению;
■ способны к самостоятельному амебоидному передвижению.

Лейкоциты образуются в красном костном мозге, тимусе, лимфатических узлах, селезенке; продолжительность их жизни составляет несколько дней (у некоторых видов лейкоцитов — несколько лет); разрушаются в селезенке, очагах воспаления.

Лейкоциты могут проходить сквозь небольшие отверстия в стенках капилляров; обнаруживаются как в крови, так и в межклеточном пространстве тканей. В 1 мм 3 крови человека насчитывается примерно 8000 лейкоцитов, но это число сильно изменяется в зависимости от состояния организма.

Основные типы лейкоцитов человека: зернистые (гранулоциты) и незернистые (агранулоциты).

Зернистые лейкоциты , или гранулоциты , образуются в красном костном мозге и содержат в цитоплазме характерные гранулы (зерна) и ядра, разделенные на доли, которые связаны друг с другом попарно или по три тонкими перемычками. Главная функция гранулоцитов — борьба с проникшими в организм чужеродными микроорганизмами.

Признак, отличающий кровь женщины от крови мужчины: в гранулоцитах крови женщин от одной из долей ядра отходит отросток, имеющий форму барабанной палочки.

Формы гранулоцитов (в зависимости от окрашивания гранул цитоплазмы определенными красителями): нейтрофилы, эозинофилы, базофилы (все они называются микрофагами ).

Нейтрофилы осуществляют захват и переваривание бактерий; они составляют около 70% от общего числа лейкоцитов; их гранулы окрашиваются основными (синими) и кислыми (красными) красителями в фиолетовый цвет.

Эозинофилы эффективно поглощают комплексы антиген — антитело Б; они обычно составляют около 1,5% всех лейкоцитов, однако при аллергических состояниях их количество резко возрастает; при обработке кислым красителем эозином их гранулы окрашиваются в красный цвет.

Базофилы вырабатывают гепарин (ингибитор системы свертывания крови) и гистамин (гормон, регулирующий тонус гладких мышц и выделение желудочного сока); составляют около 0,5% всех лейкоцитов; основными красителями (типа метиленового синего) их гранулы окрашиваются в синий цвет.

Незернистые лейкоциты , или агранулоциты , содержат крупное округлое или овальное ядро, которое может занимать почти всю клетку, и незернистую цитоплазму.

Формы агранулоцитов: моноциты и лимфоциты .

Моноциты (макрофаги) — наиболее крупные лейкоциты, способные мигрировать через стенки капилляров в очаги воспаления в тканях, где они активно фагоцитируют бактерии и другие крупные частицы. В норме их количество в крови человека составляет около 3-11% от общего числа лейкоцитов и возрастает при некоторых заболеваниях.

Лимфоциты — самые мелкие из лейкоцитов (немного крупнее эритроцитов); имеют округлую форму и содержат очень мало цитоплазмы; способны вырабатывать антитела в ответ на попадание в организм чужеродного белка, участвуют в выработке иммунитета. Образуются в лимфатических узлах, красном костном мозге, селезенке; составляют около 24% от общего числа лейкоцитов; могут жить более десяти лет.

Лейкоз — заболевание, при котором в красном костном мозге начинается неконтролируемое образование патологически измененных лейкоцитов, содержание которых в 1 мм 3 крови может достигать 500 тыс. и более.

Тромбоциты (кровяные пластинки) — это форменные элементы крови, представляющие собой клетки или фрагменты клеток неправильной формы и содержащие вещества, участвующие в свертывании крови . Образуются в красном костном мозге из крупных клеток — мегакариоцитов. В 1 мм 3 крови находится примерно 250 тыс. тромбоцитов. Разрушаются в селезенке.

Особенности строения тромбоцитов:
■ размеры примерно такие же, как и у эритроцитов;
■ имеют округлую, овальную или неправильную форму;
■ клетки не имеют ядра;
■ окружены мембранами.

❖ Свертывание крови — цепной процесс остановки кровотечения путем ферментативного формирования фибриновых тромбов, в котором принимают участие все клетки крови (особенно тромбоциты), некоторые белки плазмы, ионы Са 2+ , стенка сосуда и окружающая сосуд ткань.

❖ Этапы свертывания крови:

■ при разрыве тканей, стенок сосудов и т.п. разрушаются тромбоциты , высвобождая фермент тромбопластин, который инициирует процесс свертывания крови;

■ под воздействием ионов Са 2+ , витамина К и некоторых компонентов плазмы крови тромбопластин превращает неактивный фермент (белок) протромбин в активный тромбин;

■ тромбин при участии ионов Са 2+ инициирует превращение фибриногена в тончайшие нити нерастворимого белка фибрина;

■ фибрин образующего губчатую массу, в порах которой застревают форменные элементы крови (эритроциты, лейкоциты и др.), образуя сгусток крови — тромб. Тромб плотно закупоривает отверстие в сосуде, останавливая кровотечение.

❖ Особенности крови некоторых групп животных

■ В крови кольчатых червей гемоглобин присутствует в растворенном виде, кроме того, в ней циркулируют бесцветные амебоидные клетки, выполняющие защитную функцию.

■ У членистоногих кровь (гемолимфа ) бесцветная, не содержит гемоглобина, имеет бесцветные амебоидные лейкоциты и служит для транспорта питательных веществ и продуктов метаболизма, подлежащих экскреции. В крови крабов, омаров и некоторых моллюсков вместо гемоглобина присутствует сине-зеленый пигмент гемоцианин , содержащий медь вместо железа.

У рыб, амфибий, рептилий и птиц в крови имеются эритроциты, которые содержат гемоглобин и (в отличие от эритроцитов человека) имеют ядро.

Тканевая (межклеточная) жидкость — один из компонентов внутренней среды организма; окружает все клетки организма, по составу сходна с плазмой, но почти не содержит белков.

Образуется в результате просачивания плазмы крови через стенки капилляров. Обеспечивает клетки питательными веществами, кислородом, гормонами и др. и удаляет конечные продукты клеточного обмена.

Значительная часть тканевой жидкости возвращается обратно в кровяное русло путем диффузии, либо непосредственно в венозные концы капиллярной сети, либо (большая часть) в замкнутые с одного конца лимфатические капилляры, образуя лимфу.

Лимфа — один из видов соединительной ткани; бесцветная или молочно-белая жидкость в организме позвоночных животных, близкая по составу к плазме крови, но с меньшим (в 3-4 раза) количеством белков и большим количеством лимфоцитов, циркулирующая по лимфатическим сосудам и образующаяся из тканевой жидкости.

■ Выполняет транспортную (транспорт белков, воды и солей из ткани в кровь) и защитную функции.

■ Объем лимфы в организме человека 1-2 л.

Гемолимфа — бесцветная или слабо окрашенная жидкость, циркулирующая в сосудах или межклеточных полостях многих беспозвоночных животных, имеющих незамкнутую кровеносную систему (членистоногие, моллюски и др.). Часто содержит дыхательные пигменты (гемоцианин, гемоглобин), клеточные элементы (амебоциты, экскреторные клетки, реже эритроциты) и (у ряда насекомых: божьих коровок, некоторых кузнечиков и др.) сильнодействующие яды, обусловливающие их несъедобность для хищников. Обеспечивает транспорт газов, питательных веществ, продуктов.

Гемоцианин — медьсодержащий дыхательный пигмент голубого цвета, содержащийся в гемолимфе некоторых беспозвоночных животных и обеспечивающий перенос кислорода.

Совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям, называют тканью . В организме человека выделяют 4 основных группы тканей : эпителиальную, соединительную, мышечную, нервную.

Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало.

Таким образом создается препятствие для проникновения микробов, вредных веществ и надежная защита лежащих под эпителием тканей. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому .

Различают несколько видов эпителия – кожный, кишечный, дыхательный.

К производным кожного эпителия относятся ногти и волосы. Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Выделяемые железами ферменты расщепляют питательные вещества. Продукты расщепления питательных веществ всасываются кишечным эпителием и попадают в кровеносные сосуды. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные кнаружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы.

Соединительная ткань . Особенность соединительной ткани – это сильное развитие межклеточного вещества.

Основными функциями соединительной ткани являются питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества. Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую похожа и жировая ткань. Она богата клетками, которые наполнены жиром.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью.

Мышечная ткань . Эта ткань образована мышечными . В их цитоплазме находятся тончайшие нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань.

Поперечно-полосатой ткань называется потому, что ее волокна имеют поперечную исчерченность, представляющую собой чередование светлых и темных участков. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань состоит из волокон вытянутой формы, достигающих в длину 10–12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной мышцы, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. Сокращение мышц имеет огромное значение. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметра кровеносных сосудов.

Нервная ткань . Структурной единицей нервной ткани является нервная клетка – нейрон.

Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы – овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки. Большинство нейронов имеют короткие, толстые, сильно ветвящиеся вблизи тела отростки и длинные (до 1,5 м), и тонкие, и ветвящиеся только на самом конце отростки. Длинные отростки нервных клеток образуют нервные волокна. Основными свойствами нейрона является способность возбуждаться и способность проводить это возбуждение по нервным волокнам. В нервной ткани эти свойства особенно хорошо выражены, хотя характерны так же для мышц и желез. Возбуждение предается по нейрону и может передаваться связанным с ним другим нейронам или мышце, вызывая ее сокращение. Значение нервной ткани, образующей нервную систему, огромно. Нервная ткань не только входит в состав организма как его часть, но и обеспечивает объединение функций всех остальных частей организма.

Тело многих живых организмов состоит из тканей. Исключениями являются все одноклеточные, а также некоторые многоклеточные, к примеру, к которым относятся водоросли, а также лишайники. В этой статье мы рассмотрим виды тканей. Биология изучает данную тему, а именно ее раздел - гистология. Название этой отрасли происходит от греческих слов "ткань" и "знание". Существуют очень многие виды тканей. Биология изучает и растительные, и животные. Они имеют существенные различия. биология изучает довольно давно. Впервые они описывались даже такими древними учеными, как Аристотель и Авиценна. Ткани, виды тканей биология продолжает изучать и дальше - в ХІХ веке их исследовали такие известные ученые, как Мольденгауэр, Мирбель, Гартиг и другие. С их участием были открыты новые типы совокупностей клеток, изучены их функции.

Виды тканей - биология

Прежде всего следует отметить, что ткани, которые свойственны растениям, не характерны для животных. Поэтому виды тканей биология может разделить на две большие группы: растительные и животные. Обе объединяют большое количество разновидностей. Их мы далее и рассмотрим.

Виды животных тканей

Начнем с того, что нам ближе. Так как мы относимся к царству Животные, наш организм состоит именно из тканей, разновидности которых сейчас будут описаны. Виды животных тканей можно объединить в четыре большие группы: эпителиальная, мышечная, соединительная и нервная. Первые три подразделяются на множество разновидностей. Только последняя группа представлена лишь одним типом. Далее рассмотрим все виды тканей, строение и функции, которые им характерны, по порядку.

Нервная ткань

Так как она бывает только одной разновидности, начнем с нее. Клетки данной ткани называются нейронами. Каждый из них состоит из тела, аксона и дендритов. Последние - это отростки, по которым электрический импульс передается от клетки к клетке. Аксон у нейрона один - это длинный отросток, дендритов несколько, они более мелкие, чем первый. В теле клетки находится ядро. Кроме того, в цитоплазме расположены так называемые тельца Ниссля - аналог эндоплазматического ретикуллума, митохондрии, которые вырабатывают энергию, а также нейротрубочки, которые участвуют в проведении импульса от одной клетки к другой.

В зависимости от своих функций нейроны разделяются на несколько типов. Первый вид - сенсорные, или афферентные. Они проводят импульс от органов чувств к головному мозгу. Второй тип нейронов - ассоциативные, или переключающие. Они анализируют информацию, которая поступила от органов чувств, и вырабатывают ответный импульс. Такого виды нейроны находятся в головном и спинном мозге. Последняя разновидность - двигательные, или афферентные. Они проводят импульс от ассоциативных нейронов к органам. Также в нервной ткани есть межклеточное вещество. Оно выполняет очень важные функции, а именно обеспечивает фиксированное расположение нейронов в пространстве, участвует в выведении из клетки ненужных веществ.

Эпителиальная

Это такие виды тканей, клетки которых плотно прилегают друг к другу. Они могут иметь разнообразную форму, но всегда расположены близко. Все различные виды тканей данной группы имеют сходство и в том, что межклеточного вещества в них мало. Оно в основном представлено в виде жидкости, в некоторых случаях его может и не быть. Это виды тканей организма, которые обеспечивают его защиту, а также выполняют секреторную функцию.

Данная группа объединяет несколько разновидностей. Это плоский, цилиндрический, кубический, сенсорный, реснитчатый и железистый эпителий. Из названия каждого можно понять, из клеток какой формы они состоят. Разного типы эпителиальные ткани отличаются и своим расположением в организме. Так, плоский выстилает полости верхних органов пищеварительного тракта - ротовой полости и пищевода. Цилиндрический эпителий находится в желудке и кишечнике. Кубический можно найти в почечных канальцах. Сенсорный выстилает полость носа, на нем находятся специальные ворсинки, обеспечивающие восприятие запахов. Клетки реснитчатого эпителия, как понятно из его названия, обладают цитоплазматическими ресничками. Данная разновидность ткани выстилает дыхательные пути, которые находятся ниже носовой полости. Реснички, которые имеет каждая клетка, выполняют очистительную функцию - они в некоторой степени фильтруют воздух, который проходит по органам, укрытым этим видом эпителия. И последняя разновидность данной группы тканей - железистый эпителий. Его клетки выполняют секреторную функцию. Они находятся в железах, а также в полости некоторых органов, таких как желудок. Клетки данного вида эпителия вырабатывают гормоны, желудочный сок, молоко, кожное сало и многие другие вещества.

Мышечные ткани

Данная группа подразделяется на три вида. Мышца бывает гладкая, поперечно-полосатая и сердечная. Все мышечные ткани похожи тем, что состоят из длинных клеток - волокон, в них содержится очень большое количество митохондрий, так как им необходимо много энергии для осуществления движений. выстилает полости внутренних органов. Сокращение таких мышц мы не можем контролировать сами, так как они иннервируются автономной нервной системой.

Клетки поперечно-полосатой мышечной ткани отличаются тем, что в них содержится больше митохондрий, чем в первой. Это объясняется тем, что им требуется больше энергии. Поперечно-полосатая мускулатура способна сокращаться значительно быстрее, чем гладкая. Из нее состоят скелетные мышцы. Они иннервируются соматической нервной системой, поэтому мы можем сознательно их контролировать. Мышечная сердечная ткань совмещает в себе некоторые характеристики первых двух. Она способна так же активно и быстро сокращаться, как поперечно-полосатая, но иннервируется автономной нервной системой, так же, как и гладкая.

Соединительные виды тканей и их функции

Все ткани этой группы характеризуются большим количеством межклеточного вещества. В некоторых случаях оно выступает в жидком агрегатном состоянии, в некоторых — в жидком, иногда — в виде аморфной массы. К этой группе принадлежат семь типов. Это плотная и рыхлая волокнистые, костная, хрящевая, ретикулярная, жировая, кровь. В первой разновидности преобладают волокна. Она расположена вокруг внутренних органов. Ее функции заключаются в придании им эластичности и их защите. В рыхлой волокнистой ткани аморфная масса преобладает над самими волокнами. Она полностью заполняет промежутки между внутренними органами, в то время как плотная волокнистая формирует только своеобразные оболочки вокруг последних. Она также играет защитную роль.

Костная и формируют скелет. Он выполняет в организме опорную функцию и отчасти защитную. В клетках и межклеточном веществе костной ткани преобладают в основном это фосфаты и соединения кальция. Обмен данных веществ между скелетом и кровью регулируют такие гормоны, как кальцитонин и паратиреотропин. Первый поддерживает нормальное состояние костей, участвуя в превращении ионов фосфора и кальция в органические соединения, запасаемые в скелете. А второй, наоборот, при недостатке этих ионов в крови провоцирует получение их из тканей скелета.

Кровь содержит много жидкого межклеточного вещества, оно называется плазмой. Ее клетки довольно своебразны. Они подразделяются на три типа: тромбоциты, эритроциты и лейкоциты. Первые отвечают за свертывание крови. Во время данного процесса формируется небольшой тромб, который предотвращает дальнейшую кровопотерю. Эритроциты отвечают за транспорт кислорода по организму и обеспечение им всех тканей и органов. На них могут находиться аглютиногены, которые существуют двух видов — А и В. В плазме крови возможно содержание аглютининов альфа или бета. Они являются антителами к аглютиногенам. По этим веществам и определяется группа крови. У первой группы на эритроцитах не наблюдается аглютиногенов, а в плазме находятся аглютинины двух видов сразу. Вторая группа обладает аглютиногеном А и аглютинином бета. Третья — В и альфа. В плазме четвертой нет аглютининов, но на эритроцитах находятся аглютиногены и А, и В. Если А встречается с альфа или В с бета, происходит так называемая реакция аглютинации, вследствие чего эритроциты погибают и образовываются тромбы. Такое может произойти, если перелить кровь несоответствующей группы. Учитывая, что при переливании используются только эритроциты (плазма отсеивается на одном из этапов обработки донорской крови), то человеку с первой группой можно переливать только кровь его же группы, со второй — кровь первой и второй группы, с третьей — первой и третьей группы, с четвертой — любой группы.

Также на эритроцитах могут находиться антигены D, что определяет резус-фактор, если они присутствуют, последний положительный, если отсутствуют — отрицательный. Лимфоциты отвечают за иммунитет. Они делятся на две основные группы: В-лимфоциты и Т-лимфоциты. Первые вырабатываются в костном мозге, вторые — в тимусе (железе, расположенной за грудиной). Т-лимфоциты подразделяются на Т-индукторы, Т-хелперы и Т-супрессоры. Ретикулярная соединительная ткань состоит из большого количества межклеточного вещества и стволовых клеток. Из них образуются клетки крови. Эта ткань составляет основу костного мозга и других органов кроветворения. Также существует клетки которой содержат в себе липиды. Она выполняет запасную, теплоизоляционную и иногда защитную функцию.

Как устроены растения?

Данные организмы, как и животные, состоят из совокупностей клеток и межклеточного вещества. Виды тканей растений мы и опишем дальше. Все они делятся на несколько больших групп. Это образовательные, покровные, проводящие, механические и основные. Виды тканей растений многочисленны, так как к каждой группе принадлежит несколько.

Образовательные

К ним относятся верхушечные, боковые, вставочные и раневые. Основная их функция — обеспечение роста растения. Они состоят из небольших клеток, которые активно делятся, а затем дифференцируются, образуя любой другой вид тканей. Верхушечные находятся на кончиках стеблей и корней, боковые — внутри стебля, под покровными, вставочные — в основаниях междоузлий, раневые — на месте повреждения.

Покровные

Они характеризуются толстыми клеточными стенками, состоящими из целлюлозы. Они играют защитную роль. Бывают трех видов: эпидерма, корка, пробка. Первая покрывает все части растения. Она может иметь защитный восковый налет, также на ней находятся волоски, устьица, кутикула, поры. Корка отличается тем, что не имеет пор, по всем остальным характеристикам она сходна с эпидермой. Пробка — это мертвые покровные ткани, которые формируют кору деревьев.

Проводящие

Эти ткани бывают двух разновидностей: ксилема и флоэма. Их функции — транспорт растворенных в воде веществ от корня к другим органам и наоборот. Ксилема сформирована из сосудов, образованных мертвыми клетками с твердыми оболочками, поперечных перепонок нет. Они транспортируют жидкость вверх.

Флоэма — ситовидные трубки — живые клетки, в которых нет ядер. Поперечные перепонки имеют крупные поры. С помощью данной разновидности растительных тканей вещества, растворенные в воде, транспортируются вниз.

Механические

Они также бывают двух типов: и склеренхима. Главная их задача — обеспечение прочности всех органов. Колленхима представлена живыми клетками с одеревеневшими оболочками, которые плотно прилегают друг к другу. Склеренхима состоит из вытянутых мертвых клеток с твердыми оболочками.

Основные

Как понятно из их названия, они составляют основу всех органов растения. Они бывают ассимиляционные и запасные. Первые находятся в листьях и зеленой части стебля. В их клетках находятся хлоропласты, которые отвечают за фотосинтез. В запасающей ткани накапливаются органические вещества, в большинстве случаев это крахмал.