Усиливает реабсорбцию воды из почечных канальцев гормон. Процесс реабсорбции. Реабсорбция и секреция веществ в различных отделах нефрона

13 Май, 2017 Vrach

Реабсорбция в почках - это обратное поглощение организмом из мочи веществ различного происхождения. Такими веществами могут быть белок, глюкоза, вода, натрий, органические, а также неорганические компоненты. В процессе обратного поглощения химических веществ и других компонентов задействованы почечные канальцы, а также эпителиальные клетки. Если химические вещества являются продуктами распада и находятся в организме в избыточном количестве, то отфильтровываются эпителиальными клетками. Процесс всасывания активизируется в проксимальных канальцах.

Различается несколько способов поглощения организмом питательных компонентов:

  1. Активный - реабсорбция глюкозы, калия, ионов натрия, магния, аминокислот. Процесс транспортировки проходит против концентрационного, электрохимического градиента.
  2. Пассивный - реабсорбция воды, бикарбоната, мочевины. Происходит транспортировка по электрохимическому, осмотическому и концентрационному градиенту.
  3. Транспортировка с помощью пиноцитоза - реабсорбция белка.

Скорость фильтрации, а также уровень транспортировки химических элементов и полезных веществ напрямую зависит от качества питания, характера употребляемых продуктов, активного образа жизни, наличия хронических заболеваний.

Виды

Прием питательных компонентов осуществляется через разные каналы. В связи с этим реабсорбция подразделяется на 2 вида.

Проксимальная

В процессе проксимальной реабсорбции из первичной мочи транспортируются белки, аминокислоты, витаминизированные компоненты и декстроза. В данном случае наблюдается полноценное поглощение веществ. На фильтрацию приходится только 1/3 от всего объема питательных компонентов.

  • Реабсорбция воды является пассивным методом, его скорость, а также качество зависят от наличия гидрохлорида и щелочи в продуктах фильтрации.
  • Транспортировка бикарбоната осуществляется активным и пассивным способом. Ее скорость зависит от области внутреннего органа, через которые распределяется моча. Прохождение мочи через канальцы - динамичное. Всасывание питательных компонентов через мембрану - постепенное. При пассивной транспортации происходит уменьшение объема мочи и увеличение концентрации бикарбоната.
  • Процесс реабсорбции декстрозы, а также аминокислот происходит при непосредственном участии эпителиальных клеток, расположенных в щеточной каемке апикальной мембраны. При указанном процессе происходит одновременное образование гидрохлорида и наблюдается пониженная концентрация бикарбоната.
  • При выделении глюкозы происходит соединение с транспортирующими клетками. Если концентрация глюкозы увеличена, то транспортирующие клетки испытывают нагрузку, в результате этого компонент не транспортируется в кровеносную систему.

В процессе проксимальной функции происходит максимальное поглощение белка, а также пептидов.

Дистальная

Она влияет на конечный состав мочи, а также концентрацию органических компонентов. На данном этапе происходит максимальное поглощение щелочи и пассивная транспортировка ионов кальция, фосфатов, калия, хлоридов.

Возможные проблемы

Если наблюдается неполноценная фильтрация или проявляется дисфункция фильтрующих органов, то данный процесс может привести к появлению различных патологий и физиологических нарушений:

  1. Расстройства канальцевой реабсорбции. Увеличение или же снижение всасывания ионов, воды или органических веществ из просвета канальцев. Причины дисфункции возникают из-за пониженной активности транспортирующих компонентов, недостатка переносчиков и макроэргов, травма эпителия.
  2. Нарушение процесса секреции эпителиальных клеток. Травма дистальных отделов канальцев, повреждение тканей и клеток мозгового или коркового вещества почек. Наличие дисфункции является провокатором развития почечных и внепочечных синдромов.
  3. Почечные синдромы - возникают вследствие диуреза, нарушения ритма мочеиспускания, изменения цвета и характера мочи. Почечные синдромы приводят к развитию почечной недостаточности, тубулопатии, нефрита .
  4. Полиурия - диурез, снижение удельного веса мочи.
  5. Олигурия - уменьшение объема суточной мочи, увеличение удельного веса жидкости.
  6. Гормональный дисбаланс - активная выработка гормона альдостерона провоцирует увеличение всасывания натрия, результатом чего является скопление жидкости в организме, которое приводит к появлению отеков , снижению наличия калия.
  7. Патологии структуры эпителиальных клеток - данный процесс является основной причиной дисфункции контроля за концентрацией мочи.

Установить точную причину патологического состояния можно при помощи анализа мочи.

Истории наших читателей

«Вылечить ПОЧКИ я смогла с помощью простого средства, о котором узнала из статьи ВРАЧА-УРОЛОГА с 24 летним стажем Пушкарь Д.Ю...»

Лабораторная оценка

Для того, чтобы определить, как протекает проксимальная реабсорбция, требуется обозначить концентрацию глюкозы в организме, то есть, ее наивысший показатель.

  • Для определения реабсорбции глюкозы пациенту внутривенно вводится сахарный раствор, который значительным образом увеличивает процент содержания глюкозы в крови.
  • Изучается анализ мочи. Если уровень содержания соединения равен 9, 5 - 10 ммоль/л, то это норма.

Для определения процесса дистальной реабсорбции проводится другое тестирование:

  • Пациент в течение определенного времени не должен пить никакой жидкости.
  • Берется анализ мочи и исследуется состояние жидкости и ее плазмы.
  • Через определенный промежуток времени, пациенту вводится вазопрессин.
  • После этого разрешается употреблять воду.

После изучения результатов реакции организма позволяется диагностировать несахарный или нефрогенный диабет .

Нормальная работоспособность мочевыделительной системы способствует своевременному и регулярному выведению из организма токсических веществ и продуктов распада. При появлении первых симптомов нарушения нормального функционирования почек необходимо срочно обратиться к специалисту. Несвоевременная терапия или же полное ее отсутствие может привести к образованию серьезных осложнений, развитию хронических патологических процессов.

Устали бороться с почечными заболеваниями?

ОТЕКИ лица и ног, БОЛИ в пояснице, ПОСТОЯННАЯ слабость и быстрая утомляемость, болезненное мочеиспускание? Если у вас есть эти симптомы, то вероятность заболевания почек составляет 95%.

Если вам не наплевать на свое здоровье , то прочитайте мнение врача-уролога с 24 летним стажем работы. В своей статье он рассказывает о капсулах РЕНОН ДУО .

Это быстродействующее немецкое средство для восстановления почек, которое много лет применяется во всем мире. Уникальность препарата заключается:

  • Ликвидирует причину возникновения болей и приводит почки к первоначальному состоянию.
  • Немецкие капсулы устраняют боли уже при первом курсе применения, и помогают полностью вылечить заболевание.
  • Отсутствуют побочные эффекты и нет аллергических реакций.

Основной функцией почек является переработка и выведение из организма продуктов обмена веществ, токсических, медикаментозных соединений.

Нормальное функционирование почек способствует нормализации артериального давления, процесса гомеостаза, образования гормона эритропоэтина.

В результате нормального функционирования почечной системы образуется моча. Механизм образования мочи состоит из трех взаимосвязанных этапов: фильтрация, реабсорбция, секреция. Появление сбоев в работе органа приводит к развитию нежелательных последствий.

Общие понятия

Реабсорбция — это поглощение организмом из мочевой жидкости веществ различного происхождения.

Процесс обратного поглощения химических элементов происходит через почечные каналы при участии эпителиальных клеток. Они выполняют функцию абсорбента. В них происходит распределение элементов, которые содержатся в продуктах фильтрации.

Также впитывается вода, глюкоза, натрий, аминокислоты, другие ионы, которые транспортируются в кровеносную систему. Химические составляющие, которые являются продуктами распада, находятся в избытке в организме, отфильтровываются данными клетками.

Процесс всасывания происходит в проксимальных канальцах. Затем механизм фильтрации химических соединений переходит в петлю Генле, дистальные извитые канальца, собирательные трубочки.

RK6L2Aqdzz0

Механика процессов

На этапе реабсорбции происходит максимальное поглощение необходимых для нормального функционирования организма химических элементов, ионов. Различают несколько способов поглощения органических компонентов.

  1. Активный. Транспортировка веществ происходит против электрохимического, концентрационного градиента: глюкоза, ионы натрия, калия, магния, аминокислоты.
  2. Пассивный. Характеризируется передачей необходимых компонентов по концентрационному, осмотическому, электрохимическому градиенту: вода, мочевина, бикарбонаты.
  3. Транспортировка при помощи пиноцитоза: белок.

Скорость и уровень фильтрации, транспортировки необходимых химических элементов и компонентов зависит от характера употребляемой пищи, образа жизни, хронических заболеваний.

Виды реабсорбции

В зависимости от области канальцев, через которые происходит распределение питательных элементов, выделяют несколько видов реабсорбции:

  • проксимальная;
  • дистальная.

Проксимальная отличается способностью данных каналов выделять, переносить из первичной мочи аминокислоты, белок, декстрозу, витамины, воду, ионов натрия, кальция, хлора, микроэлементы.

  1. Выделение воды относится к пассивному механизму транспортировки. Скорость и качество процесса зависит от наличия в продуктах фильтрации гидрохлорида и щелочи.
  2. Перемещение бикарбоната происходит при помощи активного и пассивного механизма. Скорость впитывания зависит от области органа, через которые проходит первичная моча. Ее прохождение сквозь канальцы отличается динамичностью. Всасывание компонентов через мембрану требует определенного времени. Пассивный механизм транспортации характеризируется уменьшением объема мочи, увеличением концентрации бикарбоната.
  3. Транспортировка аминокислот и декстрозы проходит при участии эпителиальной ткани. Они находятся в щеточной каемке апикальной мембраны. Процесс поглощения данных компонентов характеризируется одновременным образованием гидрохлорида. При этом наблюдается низкая концентрация бикарбоната.
  4. Выделение глюкозы отличается максимальным соединением с транспортирующими клетками. При высокой концентрации глюкозы увеличивается нагрузка на транспортирующие клетки. В результате глюкоза не перемещается в кровеносную систему.

При проксимальном механизме наблюдается максимальное поглощение пептидов, белка.

Дистальная реабсорбция влияет на конечный состав, концентрацию органических компонентов в мочевой субстанции. При дистальном поглощении наблюдается активное всасывание щелочи. Калий, ионы кальция, фосфаты, хлорид транспортируется пассивно.

Концентрация мочи, активизация всасывания обусловлено особенностями строения почечной системы.

Возможные проблемы

Дисфункции фильтрующего органа могут привести к развитию различных патологий и нарушениям. К основным патологиям относятся:

  1. Расстройства канальцевой реабсорбции характеризируются увеличением и снижением всасывания воды, ионов, органических компонентов из просвета канальцев. Дисфункция возникает в результате снижения активности транспортировочных ферментов, недостатка переносчиков, макроэргов, травматизация эпителия.
  2. Нарушения экскреции, секреции эпителиальными клетками почечных канальцев ионов калия, водорода, продуктов обмена веществ: парааминогиппуровой кислоты, диодраста, пенициллина, аммиака. Дисфункции возникают в результате травматизации дистальных отделов канальцев нефронов, повреждения клеток и тканей коркового и мозгового вещества органа. Данные дисфункции приводят к развитию почечных, внепочечных синдромов.
  3. Почечные синдромы отличаются развитием диуреза, ухудшением ритма мочеиспускания, изменением химического состава и удельным весом мочевой субстанции. Дисфункции приводят к развитию почечной недостаточности, нефритического синдрома, тубулопатии.
  4. Полиурия отличается увеличением диуреза, снижением удельного веса мочи. Причинами патологии выступают:
  • избыток жидкости;
  • активизация кровотока через корковое вещество почек;
  • увеличение гидростатического давления в сосудах;
  • снижения онкотического давления кровеносной системы;
  • нарушения коллоидно-осмотического давления;
  • ухудшения канальцевой реабсорбции воды, ионов натрия.
  1. Олигурия. При данной патологии наблюдается уменьшение суточного диуреза, увеличение удельного веса мочевой жидкости. Основными причинами нарушения являются:
  • недостаток жидкости в организме. Возникает в результате активизации потоотделения, при диарее;
  • спазм приносящих артериол почек. Основным признаком нарушения выступает отек;
  • артериальная гипотензия;
  • закупорка, травматизация капилляров;
  • активизация процесса транспортировки воды, ионов натрия в дистальных канальцах.
  1. Гормональные сбои. Активизация выработки альдостерона способствует увеличению всасывания натрия в кровеносную систему. В результате наблюдается скопление жидкости, что приводит к отечности, снижению концентрации калия в организме.
  2. Патологические изменения эпителиальных клеток. Они выступают основной причиной дисфункции контроля концентрации мочи.

Установить причину патологии можно при помощи лабораторных исследований мочи.

jzchLsJlhIM

Нормальное функционирование почек способствует своевременному выведению из организма продуктов распада химических соединений, обмена веществ, токсических элементов.

При появлении первых признаков нарушения нормальной работы органа необходимо проконсультироваться со специалистом. Несвоевременное лечение или его отсутствие может привести к развитию осложнений, хронических заболеваний.

Реабсорбция почек это частичный возврат жидкости организму с содержащимися в ней полезными веществами. А ненужные вещества выводятся наружу. Общий объем выходящей мочи составляет порядка 1,5 литров за сутки.

Особенности выведения мочи

В течение суток почка перерабатывает около 180 литров жидкости, при этом не весь ее объем выводится с мочой.

Определение реабсорбции в почкахДля того, чтобы понять как происходит этот процесс, необходимо знать особенности строения почки, а в частности нефрона. Нефрон – это одна из функциональных почечных единиц, в которой происходит непосредственная фильтрация первичной мочи. Секреция вещества, почечное тельце и система канальцев – это то, из чего состоит нефрон.

Главные составляющие нефрона:

  • почечное тельце – включает в себя клубочки и капсулы; именно в нем происходит переработка плазмы крови с жидкости переходящей в мочу;
  • почечные канальцы – часть нефрона, производящие фильтрацию.

Канальца почки включают два вида: проксимальный и дистальный. Проксимальный каналец – это удлиненная и широкая составляющая нефрона, где происходит фильтрация из капсулы в петли Генле. Петли Генле выполняют соединительную функцию в проксимальных канальцах с дистальными.

Анатомия почек — схема

Строение активной клетки в отделах нефрона:

  • капсула клубочка (почечное тело);
  • проксимальный каналец;
  • петли Генле;
  • дистанционный каналец;
  • значимая часть в собирательных трубочках;
  • собирательная трубка.

Для осуществления переработки канальцевая реабсорбция использует механизмы молекул, которые осуществляют непосредственную транспортировку.

Перемещение происходит через мембранную плазму. Существует несколько видов транспортировки, которые имеют свои особенности.

Виды транспортировки жидкости для фильтрации

Канальцевая реабсорбция включает несколько видов транспортировки. Но главными и незаменимыми принято считать активный и пассивный вид. Именно они играют важную роль в реабсорбции воды.

Активная транспортировка

  1. Активно-первичная – в процессе перемещения используется энергия, получаемая во время распада кислоты. Благодаря этому виду происходит перемещение полезных микроэлементов;
  2. Активно-вторичная – данный вид активного транспорта не тратит энергию. Благодаря этому виду происходит перемещение, переработка глюкозы и аминокислоты.

В момент переработки происходит активное использование мембраны, что влияет на расщепление белка, глюкозы с ионами натрия. После обратного возвращения в клетку происходит дополнительное присоединение ионов металла. Попавшая глюкоза в межклеточную жидкость возвращается в кроваток, проходя через капилляры. Переработка глюкозы происходит только в проксимальном отделе. Это связано с тем, что именно там находится необходимый вид транспортировки.

Где осуществляется реабсорбция в системе

Пассивная транспортировка

Всасывание происходит по направлению движения ионов через мембрану. Быстрое всасывание хлористых ионов происходит в дистальных извитых канальцах. В иных случаях переработка происходит по-разному или не производится вовсе. Зависит это от особенностей перерабатываемого вещества.

Главной особенностью переработки воды является то, что она может усваиваться в различных отделах.

Примерно 45% всасывает в проксимальном канальце сразу после усвоения ионов. 30% усваивается в петлях Генле, и в этот момент происходит использование поворотно-проточного механизма. В извитых канальцах может поглощаться порядка 25%, тогда вода может задерживаться или выводиться вместе с вторичной мочой. При этом общий объем выводимой вторичной мочи составляет только один процент от числа первично переработанной жидкости.

Особенности переработки разных веществ

В момент переработки веществ используются различные виды транспортировки. Они отличаются друг от друга принципом действия.

Фильтрация глюкозы

Глюкоза – это главный и универсальный источник энергии человека. Для переработки он поступает из просвета канальца в проксимальные клетки с помощью переносчика, который обязательно содержит натриевый ион. В основном происходит пассивное перемещение. Во внутренней оболочке почки происходит высокая концентрация глюкозы, которая в дальнейшем перемещается в интерстициальную ткань, после чего она поступает в общий кровоток.

При правильной работе почек глюкоза перерабатывается полностью. В случае, если в крови наблюдается ее высокая концентрация, можно предположить, что произошла перегрузка канальцевой системы транспортировки. Из-за этого происходит нарушение переработки глюкозы и ее выход с мочой.

Механизмы реабсорбции

Фильтрация аминокислот

Всасывание аминокислот происходит с содержанием натрия в проксимальных канальцах. В процессе задействован активно-вторичный вид доставки. Помимо этого, активно задействуются дополнительные виды транспортировки, которые используются также для всасывания аминокислот не только в почках, но и в желудочно-кишечном тракте. Процесс неправильного всасывания в кишечнике вызван генетическими нарушениями человека.

Фильтрация белка

При правильной работе почек и мочевыделительной системы белок, попадая в систему фильтрации, всасывается полностью благодаря паноцитозу. Попав в клетку, происходит осмотическое давление химических веществ, которые перерабатывают белок в аминокислоты. При этом существует определенная часть белка, которая уходит в кровоток в неизменном виде.

В течение суток с конечной мочой выходит 70 мг белка. Приделы допустимых границ устанавливаются с учетом возраста. Физические нагрузки становятся причиной завышенных показателей содержания белка в моче.

Показатели нормы

Канальцевая реабсорбция имеет свои показатели нормы, однако, в случае их изменения, можно предположить, что в организме произошел сбой. Для того, чтобы оценить фильтрационную способность почек, необходимо пройти ряд диагностических обследований. В случае выявления нарушения, они помогут указать точное место локализации патологических изменений.

В качестве основных методов обследования используют биохимические данные анализа крови и мочи.

Благодаря им можно узнать клубочковую скорость переработки, проходящей в подкорке мозгового вещества, и оценить показатели канальцевой реабсорбции. В случае выявления нарушений, специалист делает предположение, что произошли изменения в выделительной способности организма или в способности всасывания.

Реабсорбция воды в канальцах

Показателями нормы скорости клубочков у здорового человека бывают от 90 до 140 мл/мин. Изменение показателей зависит от времени суток: к вечеру они будут намного ниже, чем днем. Это связано с активностью человека. В случае серьезных нарушений в работе организма, показатели меняются в сторону уменьшения. А повышаются они в послеоперационный период из-за снижения объема крови. В случае приема диуретических препаратов, наблюдается снижение показателей.

Симптоматика отклонений и способы устранения

Основные симптомы отклонения наблюдаются в случае серьезных нарушений работы мочевыделительной системы. Как правило, в такой ситуации присутствует яркая картина таких симптомов, как повышенная температура, состояние интоксикации, болевые ощущения в поясничном отделе и в районе расположения почек. Все это указывает на нарушения работы мочевыделительной системы. Чтобы не допустить появление почечной недостаточности, необходимо обратиться за консультацией в поликлинику.

Вовремя проведенная диагностика снизит риск развития серьезных отклонений. По причине нарушения способности фильтрации, почки выводят из организма полезные и необходимые вещества, тем самым наносят ему колоссальный вред. Помимо выведения полезных веществ, происходит большая концентрация продуктов распада в организме.

text_fields

text_fields

arrow_upward

Сравнение состава и количества первичной и конечной мочи пока­зывает, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках. Этот процесс называется каналъцевой реабсорбцией

В зависимости от отдела канальцев, где он происходит, различают реабсорбцию про­ксимальную и дистальную .

Реабсорбция представляет собой транс­порт веществ из мочи в лимфу и кровь и в зависимости от меха­низма транспорта выделяют пассивную, первично и вторично ак­тивную реабсорбцию.

Проксимальная реабсорбция

text_fields

text_fields

arrow_upward

Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи - глюкозы, белка, аминокислот и витаминов. В проксимальных отделах всасывается 2/3 профильтровав­шихся воды и натрия, большие количества калия, двухвалентных катионов, хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав уже существенно отличается от плазмы крови, осмотическое давление пер­вичной мочи остается таким же, как в плазме.

Всасывание воды происходит пассивно, по градиенту осмотичес­кого давления и зависит от реабсорбции натрия и хлорида. Реабсорбция натрия в проксимальном отделе осуществляется как актив­ным, так и пассивным транспортом. В начальном участке канальцев это активный процесс. Хотя натрий входит в клетки эпителия через апикальную мембрану пассивно через натриевые каналы по кон­центрационному и электрохимическому градиенту, его выведение через базолатеральные мембраны эпителиальных клеток происходит активно с помощью натрий-калиевых насосов, использующих энер­гию АТФ. Сопровождающим всасывающийся натрий анионом явля­ется здесь бикарбонат, а хлориды всасываются плохо. Объем мочи в канальце уменьшается из- за пассивной реабсорбции воды, и кон­центрация хлоридов в его содержимом растет. В конечных участках проксимальных канальцев межклеточные контакты высоко прони­цаемы для хлоридов (концентрация которых повысилась) и они пассивно по градиенту всасываются из мочи. Вместе с ними пас­сивно реабсорбируются натрий и вода. Такой пассивный транспорт одного иона (натрия) вместе с пассивным транспортом другого (хло­рида) носит название котранспорта.

Таким образом, в проксималь­ном отделе нефрона существуют два механизма всасывания воды и ионов:

1) активный транспорт натрия с пассивной реабсорбцией бикарбоната и воды,
2) пассивный транспорт хлоридов с пассивной реабсорбцией натрия и воды.

Поскольку натрий и другие электро­литы всегда всасываются в проксимальных канальцах с осмотически эквивалентным количеством воды, моча в проксимальных отделах нефрона остается изоосмотичной плазме крови.

Проксимальная реабсорбция глюкозы и аминокислот осуществля­ется с помощью специальных переносчиков щеточной каемки апи­кальной мембраны эпителиальных клеток. Эти переносчики транс­портируют глюкозу или аминокислоту только если одновременно связывают и переносят натрий. Пассивное перемещение натрия по градиенту внутрь клеток ведет к прохождению через мембрану и переносчика с глюкозой или аминокислотой. Для реализации этого процесса необходима низкая концентрация в клетке натрия, созда­ющая градиент концентрации между внешней и внутриклеточной средой, что обеспечивается энергозависимой работой натрий-кали­евого насоса базальной мембраны. Поскольку перенос глюкозы или аминокислоты связан с натрием, а его транспорт определяется ак­тивным удалением натрия из клетки, такой вид транспорта назы­вают вторично активным или симпортом, т.е. совместным пассив­ным транспортом одного вещества (глюкоза) из-за активного транс­порта другого (натрия) с помощью одного переносчика.

Поскольку для реабсорбции глюкозы необходимо связывание каж­дой ее молекулы с молекулой переносчика, очевидно, что при из­бытке глюкозы может произойти полная загрузка всех молекул пере­носчиков и глюкоза уже не сможет всасываться в кровь. Эта си­туация характеризуется понятием «максимальный канальцевый транс­ порт вещества», которое отражает максимальную загрузку канальцевых переносчиков при определенной концентрации вещества в пер­вичной моче и, соответственно, в крови. Постепенно повышая со­держание глюкозы в крови и тем самым в первичной моче, можно легко обнаружить ту величину ее концентрации, при которой глю­коза появляется в конечной моче и когда ее экскреция начинает линейно зависеть от прироста уровня в крови. Эта концентрация глюкозы в крови и, соответственно, ультрафильтрате свидетельствует о том, что все канальцевые переносчики достигли предела функци­ональных возможностей и полностью загружены. В это время реаб­сорбция глюкозы максимальна и составляет от 303 мг/мин у жен­щин и до 375 мг/мин у мужчин. Величине максимального канальцевого транспорта соответствует более старое понятие «почечный порог выведения».

Почечным порогом выведения называют ту концентрацию вещества в крови и в первичной моче, при которой оно уже не может быть полностью реабсорбировано в канальцах и появляется в конечной моче.

Такие вещества, для которых может быть найден порог вы­ведения, т.е. реабсорбирующиеся при низких концентрациях в крови полностью, а при повышенных концентрациях - не полностью, носят название пороговых. Типичным примером является глюкоза, которая полностью всасывается из первичной мочи при концентра­циях в плазме крови ниже 10 моль/л, но появляется в конечной моче, т.е. полностью не реабсорбируется, при содержании ее в плазме крови выше 10 моль/л. Следовательно, для глюкозы порог выведения составляет 10 моль/л.

Вещества, которые вообще не реабсорбируются в канальцах (ину­лин, маннитол) или мало реабсорбируются и выделяются пропорци­онально накоплению в крови (мочевина, сульфаты и др.), называ­ются непороговыми, т.к. для них порога выведения не существует.

Малые количества профильтровавшегося белка практически пол­ностью реабсорбируются в проксимальных канальцах с помощью пиноцитоза. Мелкие белковые молекулы абсорбируются на поверх­ности апикальной мембраны эпителиальных клеток и поглощаются ими с образованием вакуолей, которые передвигаясь сливаются с лизосомами. Протеолитические ферменты лизосом расщепляют поглощенный белок, после чего низкомолекулярные фрагменты и ами­нокислоты переносятся в кровь через базолатеральную мембрану клеток.

Дистальная реабсорбция

text_fields

text_fields

arrow_upward

Дистальная реабсорбция ионов и воды по объему значительно меньше проксимальной. Однако, существенно меняясь под влиянием регулирующих воздействий, она определяет состав конечной мочи и способность почки выделять либо концентрированную, либо разве­денную мочу (в зависимости от водного баланса организма). В дистальном отделе нефрона происходит активная реабсорбция на­ трия. Хотя здесь всасывается всего 10% от профильтровавшегося количества катиона, этот процесс обеспечивает выраженное умень­шение его концентрации в моче и, напротив, повышение концентрации в интерстициальной жидкости, что создает значительный гра­диент осмотического давления между мочой и интерстицием. Хлор всасывается преимущественно пассивно вслед за натрием. Способ­ность эпителия дистальных канальцев секретировать в мочу Н-ионы связана с реабсорбцией ионов натрия, этот вид транспорта в виде обмена натрия на протон получил название «антипорт». Активно всасывается в дистальном отделе канальцев калий, кальций и фос­ фаты. В собирательных трубочках, главным образом юкстамедуллярных нефронов, под влиянием вазопрессина повышается прони­цаемость стенки для мочевины и она, благодаря высокой концент­рации в просвете канальца, пассивно диффундирует в окружающее интерстициальное пространство, увеличивая его осмолярность. Под влиянием вазопрессина стенка дистальных извитых канальцев и собирательных трубочек становится проницаемой и для воды, в результате чего происходит ее реабсорбция по осмотическому гра­диенту в гиперосмолярный интерстиций мозгового вещества и далее в кровь.

Способность почки образовывать концентрированную или разве­денную мочу обеспечивается деятельностью противоточно-множи тельной канальцевой системы почки, которая представлена парал­лельно расположенными коленами петли Генле и собирательными трубочками (рис.12.2).

Цифрами обозначены величины осмотического давления интерстициальной жидкости и мочи. В собирательной трубочке цифрами в скобках обозначено осмотическое давление мочи в отсутствие вазопрессина (разведение мочи), цифрами без скобок - осмотическое давление мочи в условиях действия вазопрессина (концентрирование мочи).

Моча двигается в этих канальцах в противо­положных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются («умножаются») за счет деятельности другого колена. Опреде­ляющую роль в работе противоточного механизма играет восходящее колено петли Генле, стенка которого непроницаема для воды, но активно реабсорбирует в окружающее интерстициальное простран­ство ионы натрия. В результате, интерстициальная жидкость стано­вится гиперосмотичной по отношению к содержимому нисходящего колена петли и по направлению к вершине петли осмотическое давление в окружающей ткани растет. Стенка же нисходящего ко­лена проницаема для воды, которая пассивно уходит из просвета в гиперосмотичный интерстиций. Таким образом, в нисходящем коле­не моча из-за всасывания воды становится все более и более ги­перосмотичной, т.е. устанавливается осмотическое равновесие с интерстициальной жидкостью. В восходящем колене, из-за всасывания натрия, моча становится все менее осмотичной и в корковый отдел дистального канальца восходит уже гипотоничная моча. Однако ее количество из-за всасывания воды и солей в петле Генле существенно уменьшилось.

Собирательная трубочка, в которую затем поступает моча, тоже образует с восходящим коленом петли Генле противоточную систе­му. Стенка собирательной трубочки становится проницаемой для воды только в присутствии вазопрессина. В этом случае, по мере продвижения мочи по собирательным трубочкам вглубь мозгового вещества, в котором нарастает осмотическое давление из-за всасы­вания натрия в восходящем колене петли Генле, все больше воды пассивно уходит в гиперосмотичный интерстиций и моча становится все более концентрированной.

Под влиянием вазопрессина реализуется еще один важный для концентрирования мочи механизм - пассивный выход мочевины из собирательных трубочек в окружающий интерстиций. Всасывание воды в верхних отделах собирательных трубочек ведет к нарастанию концентрации мочевины в моче, а в самых нижних их отделах, расположенных в глубине мозгового вещества, вазопрессин повыша­ет проницаемость для мочевины и она пассивно диффундирует в интерстиций, резко повышая его осмотическое давление. Таким образом, интерстиций мозгового вещества становится наиболее вы­соко осмотичным в области вершины почечных пирамид, где и происходит увеличение всасывания воды из просвета канальцев в интерстиций и концентрирование мочи.

Мочевина интерстициальной жидкости по концентрационному гра­диенту диффундирует в просвет тонкой восходящей части петли Генле и вновь поступает с током мочи в дистальные канальцы и собирательные трубочки. Так осуществляется кругооборот мочевины в канальцах, сохраняющих высокий уровень ее концентрации в мозговом веществе. Описанные процессы протекают в основном в юкстамедуллярных нефронах, имеющих наиболее длинные петли Генле, спускающиеся глубоко внутрь мозгового вещества почки.

В мозговом веществе почки имеется и другая - сосудистая про тивоточная система, образованная кровеносными капиллярами. По­скольку кровеносная сеть юкстамедуллярных нефронов образует длинные параллельные прямые нисходящие и восходящие капилляр­ные сосуды (рис. 12.1), спускающиеся вглубь мозгового вещества, двигающаяся по нисходящему прямому капиллярному сосуду кровь постепенно отдает воду в окружающее интерстициальное простран­ство в силу нарастающего осмотического давления в ткани и, напротив, обогащается натрием и мочевиной, сгущается и замедляет свое движение. В восходящем капиллярном сосуде по мере движе­ния крови в ткани с постепенно снижающимся осмотическим дав­лением происходят обратные процессы - натрий и мочевина по концентрационному градиенту диффундируют обратно в ткань, а вода всасывается в кровь. Таким образом, и эта противоточная система способствует поддержанию высокого осмотического давления в глу­боких слоях ткани мозгового вещества, обеспечивая удаление воды и удержание натрия и мочевины в интерстиций.

Деятельность описанных противоточных систем во многом зависит от скорости движения находящихся в них жидкостей (мочи или крови). Чем скорее будет двигаться моча по трубкам противоточной системы канальцев, тем меньшие количества натрия, мочевины и воды успеют реабсорбироваться в интерстиций и большие количе­ства менее концентрированной мочи будут выделяться почкой. Чем выше будет скорость кровотока по прямым капиллярным сосудам мозгового вещества почки, тем больше натрия и мочевины унесет кровь из почечного интерстиция, т.к. они не успеют диффундиро­вать из крови назад в ткань. Этот эффект называют «вымыванием» осмотически активных веществ из интерстиция, в результате его осмолярность падает, концентрирование мочи уменьшается и почкой выделяется больше мочи низкого удельного веса (разведение мочи). Чем медленнее происходит движение мочи или крови в мозговом веществе почек, тем больше осмотически активных веществ накап­ливается в интерстиции и выше способность почки концентрировать мочу.

Регуляция каналъцевой реабсорбции

text_fields

text_fields

arrow_upward

Регуляция каналъцевой реабсорбции осуществляется как нервным , так и, в большей мере, гуморальным путем.

Нервные влияния преимущественно реализуются симпатическими проводниками и медиаторами через бета- адренорецепторы мембран клеток проксимальных и дистальных канальцев. Симпатические эф­фекты проявляются в виде активации процессов реабсорбции глюкозы, натрия, воды и фосфатов и реализуются через систему вторичных посредников (аденилатциклаза - цАМФ). В регуляции процессов ме­таболизма почечной ткани существенную роль играют трофические влияния симпатической нервной системы. Нервная регуляция крово­обращения в мозговом веществе почки увеличивает или уменьшает эффективность сосудистой противоточной системы и концентрирова­ние мочи.

Сосудистые эффекты нервной регуляции могут опосредо­ваться через внутрипочечные системы гуморальных регуляторов - ренин- ангиотензинную, кининовую, простагландины и др. Основным фактором регуляции реабсорбции воды в дистальных отделах нефрона является гормон вазопрессин, называвшийся ранее антидиуретическим гормоном. Этот гормон образуется в супраоптическом и паравентрикулярных ядрах гипоталамуса и поступает в кровь из нейрогипофиза. Влияние вазопрессина на проницаемость эпителия канальцев обусловлено наличием рецепторов к гормону, относящихся к V-2 типу, на поверхности базолатеральной мембраны клеток эпи­телия. Образование гормон-рецепторного комплекса (глава 3), влечет за собой через посредство GS-белка и гуанилового нуклеотида акти­вацию аденилатциклазы и образование цАМФ у базолатеральной мем­браны (рис. 12.3).

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.

Рис. 12.3. Механизм действия вазопрессина на проницаемость собирательных трубочек для воды.
Б-л мембрана - базолатеральная мембрана клеток,
А мембрана - апикальная мембрана,
ГН - гуанидиновый нуклеотид,АЦ - аденилатциклаза.

После этого цАМФ пересекает клетку эпителия и, достигнув апикальной мембраны, активирует цАМФ- зависимые протеинкиназы. Под влиянием этих ферментов происходит фосфорилирование мембранных белков, приводящее к повышению проницаемости для воды и увеличению поверхности мембраны. Перестройка ультра­структур клетки ведет к образованию специализированных вакуолей, переносящих большие потоки воды по осмотическому градиенту от апикальной к базолатеральной мембране, не позволяя самой клетке набухать. Такой транспорт воды через клетки эпителия реализуется вазопрессином в собирательных трубочках. Кроме того, в дистальных канальцах вазопрессин обусловливает активацию и выход из клеток гиалуронидаз, вызывающих расщепление гликозаминогликанов основ­ного межклеточного вещества и межклеточный пассивный транспорт воды по осмотическому градиенту.

Канальцевая реабсорбция воды

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция воды регулируется и другими гормона­ми.

С учетом механизмов действия все гормоны, регулирующие реабсорбцию воды, можно представить в виде шести групп:

1) повышающие проницаемость мембран дистальных отделов нефрона для воды (вазопрессин, пролактин, хорионический гонадотропин);

2) меняющие чувствительность клеточных рецепторов к вазопрессину (паратирин, кальцитонин, кальцитриол, простагландины, альдостерон);

3) меняющие осмотический градиент интерстиция мозгового слоя почки и, соответственно, пассивный осмотический транспорт воды (паратирин, кальцитриол, тиреоидные гормоны, инсулин, вазопрессин);

4) меняющие активный транспорт натрия и хлорида, а за счет этого и пассивный транспорт воды (альдостерон, вазопрессин, атриопептид, прогестерон, глюкагон, кальцитонин, простагландины);

5) повышающие осмотическое давление канальцевой мочи за счет нереабсорбированных осмотически активных веществ, например глю­козы (контринсулярные гормоны);

6) меняющие кровоток по прямым сосудам мозгового.вещества и, тем самым, накопление или «вымывание» осмотически активных веществ из интерстиция (ангиотензин- II, кинины, простагландины, паратирин, вазопрессин, атриопептид).

Канальцевая реабсорбция электролитов

text_fields

text_fields

arrow_upward

Канальцевая реабсорбция электролитов, также как и воды, регу­лируется преимущественно гормональными, а не нервными влия­ниями.

Реабсорбция натрия в проксимальных канальцах активируется альдостероном и угнетается паратирином, в толстой части восходящего калена петли Генле реабсорбция натрия активируется вазопрессином, глюкагоном, кальцитонином, а угнетается простагландинами Е. В дистальном отделе канальцев основными регуляторами транспорта натрия являются альдостерон (активация), простагландины и атриопептид (угнетение).

Регуляция канальцевого транспорта кальция, фосфата и частично магния обеспечивается, в основном, кальций-регулирующими гормонами. Паратирин имеет в канальцевом аппа­рате почки несколько участков действия. В проксимальных каналь­цах (прямой отдел) всасывание кальция происходит параллельно с транспортом натрия и воды. Угнетение реабсорбции натрия в этом отделе под влиянием паратирина сопровождается параллельным сни­жением реабсорбции кальция. За пределами проксимального каналь­ца паратирин избирательно усиливает реабсорбцию кальция, особен­но в дистальном извитом канальце и корковой части собирательных трубочек. Реабсорбция кальция активируется также кальцитриолом, а подавляется кальцитонином. Всасывание фосфата в канальцах почки угнетается и паратирином (проксимальная реабсорбция), и кальци­тонином (дистальная реабсорбция), а усиливается кальцитриолом и соматотропином. Паратирин активирует реабсорбцию магния в кор­ковой части восходящего колена петли Генле и тормозит прокси­мальную реабсорбцию бикарбоната.

2 этапом образования мочи является реабсорбция - обратное всасывание воды и растворенных в ней веществ. Это точно доказано в прямых опытах с анализом мочи, полученной путем микропункции из различных отделов нефрона.

В отличие от образования первичной мочи, которая является результатом физико-химических процессов фильтрации, реабсорбция в значительной степени осуществляется за счет биохимических процессов клеток канальцев нефрона, энергия для которых черпается из распада макроэргов. Это подтверждается тем, что после отравления веществами блокирующими тканевое дыхание (цианиды) резко ухудшается обратное всасывание натрия, а блокада фосфорилирования монойодацетоном резко угнетает реабсорбцию глюкозы. Реабсорбция ухудшается также при понижении обмена веществ в организме. Например, при охлаждении организма на морозе и диурез при этом возрастает.

Наряду с пассивными процессами транспорта (диффузия, силы осмоса) в реабсорбции большую роль играют пиноцитоз, электростатические взаимодействия между различно заряженными ионами и т.д. Различают также 2 вида активного транспорта:

первично-активный транспорт осуществляется против электрохимического градиента и при этом транспорт происходит за счет энергии АТФ,

вторично-активный транспорт осуществляется против концентрационного градиента и при этом энергия клетки не тратится. С помощью этого механизма реабсорбируется глюкоза, аминокислоты. При этом виде транспорта органическое вещество входит в клетку проксимального канальца с помощью переносчика, который обязательно должен присоединить ион натрия. Этот комплекс (переносчик + органическое вещество + ион натрия) перемещается в мембране щеточной каймы, этот комплекс за счет разности концентраций Na + между просветом канальца и цитоплазмой поступает в клетку, т.е. в канальце ионов натрия больше, чем в цитоплазме. Внутри клетки комплекс диссоциирует и ионы Na + за счет Na-K насоса выводится из клетки.

Реабсорбция осуществляется во всех отделах нефрона, за исключением капсулы Шумлянского-Боумена. Однако характер обратного всасывания и интенсивность в различных отделах нефрона неодинакова. В проксимальных отделах нефрона реабсорбция идет очень интенсивно и мало зависит от водно-солевого обмена в организме (обязательная, облигатная). В дистальных отделах нефрона реабсорбция очень изменчива. Ее называют факультативной реабсорбцией. Именно реабсорбция в дистальных канальцах и собирательных трубках в большей степени, чем в проксимальном отделе определяет функцию почки как органа гомеостаза, регулирующего постоянство осмотического давления, рН, изотонии и объема крови.

Реабсорбция в различных отделах нефрона

Реабсорбция ультрафильтрата происходит кубовидным эпителием проксимального канальца. Здесь имеют большое значение микроворсинки. В этом отделе полностью реабсорбируется глюкоза, аминокислоты, белки, витамины, микроэлементы, значительное количество Na + , Са + , бикарбонатов, фосфатов, Cl - , К + и H 2 О. В последующих отделах нефронах всасываются только ионы и Н 2 О.

Механизм всасывания перечисленных веществ неодинаков. Самым значительным по объему и энергетическим затратам занимает реабсорбция Na + . Она обеспечивается как пассивным, так и активными механизмами и происходит во всех отделах канальцев.

Активная реабсорбция Nа вызывает пассивный выход из канальцев ионов Сl - которые следуют за Na + вследствие электростатического взаимодействия: положительные ионы увлекают за собой отрицательно заряженный Сl - и др. анионы.

В проксимальных канальцах реабсорбируется около 65 -70% воды. Этот процесс осуществляется за счет разности осмотического давления - пассивно. Переход воды из первичной мочи выравнивает осмотическое давление в проксимальных канальцах до уровня его в тканевой жидкости. Из фильтрата реабсорбируется также 60-70% кальция и магния. Дальнейшая их реабсорбция продолжается в петле Генли и дистальных канальцах и с мочой выделяется только около 1% профильтровавшегося кальция и 5-10% магния. Реабсорбция кальция и в меньшей степени магния регулируется паратгормоном. Паратгормон повышает реабсорбцию кальция и магния и снижает реабсорбцию фосфора. Кальцитонин оказывает противоположное действие.

Таким образом, в проксимальном извитом канальце реабсорбируются все белки, вся глюкоза, 100% аминокислот, 70-80% воды, а, Сl, Mg, Ca. В петле Генли за счет избирательной проницаемости ее отделов для натрия и воды дополнительно еще реабсорбируется 5% ультрафильтрата и в дистальную часть нефрона поступает 15% объема первичной мочи, которая активно обрабатывается в извитых канальцах и собирательных трубках. Объем окончательной мочи всегда определяется водным и солевым балансом организма и может колебаться от 25 л в сутки (17 мл/мин) и до 300 мл (0,2 мл/мин).

Реабсорбция в дистальных отделах нефрона и собирательных трубках обеспечивает возвращение в кровь идеальную в осмотическом и солевом отношении жидкости, поддерживая постоянство осмотического давления, рН, водный баланс и стабильность концентрации ионов.

Содержание многих веществ в окончательной моче во много раз выше, чем в плазме и первичной моче, т.е. проходя по канальцам нефрона, первичная моча концентрируется. Отношение концентрации вещества в конечной моче к концентрации в плазме называют концентрационным индексом . Этот индекс характеризует процессы, которые происходят в системе канальцев нефрона.

Реабсорбция глюкозы

Концентрация глюкозы в ультрафильтрате такая же, как и в плазме,но в проксимальном отделе нефрона она практически полностью реабсорбируется. В нормальных условиях за сутки с мочой выделяется не более 130 мг. Обратное всасывание глюкозы осуществляется против высокого концентрационного градиента, т.е. реабсорбция глюкозы происходит активно, причем она переносится с помощью механизма вторично-активного транспорта. Апикальная мембрана клетки, т.е. мембрана, обращенная в сторону просвета канальца, пропускает глюкозу только в одном направлении - в клетку, а обратно в просвет канальца не пропускает.

В апикальной мембране клетки проксимального канальца имеется специальный переносчик глюкозы, но глюкоза, прежде чем взаимодействовать с переносчиком, должна превратиться в глю-6 фосфат. В мембране имеется фермент глюкокиназа, который обеспечивает фосфорилирование глюкозы. Глю-6-фосфат соединяется с переносчиком апикальной мембраны одновременно с натрием .

Этот комплекс за счет разности концентрации натрия (натрия в просвете канальца больше, чем в цитоплазме ) перемещается в мембране щеточной каймы и попадает внутрь клетки. В клетке этот комплекс диссоциирует. Переносчик возвращается за новыми порциями глюкозы, а в цитоплазме остаются глю-6-фосфат и натрий. Глю-6-фосфат под влиянием фермента глю-6-фосфотазы распадается на глюкозу и фосфатную группу. Фосфатная группа используется для превращения АДФ в АТФ. Глюкоза перемещается к базальной мембране, где соединяется с другим переносчиком, который транспортирует ее через мембрану в кровь. Транспорт через базальную мембрану клетки носит характер облегченной диффузии и не требует присутствия натрия.

Реабсорбция глюкозы находится в зависимости от ее концентрации в крови. Глюкоза полностью всасывается, если ее концентрация в крови не превышает 7-9 ммоль/л, в норме ее от 4,4 до 6,6 ммоль/л. Если содержание глюкозы оказывается выше, то часть ее не реабсорбируется и выделяется с окончательной мочой - наблюдается глюкозурия.

На этом основании введем понятие о пороге выведения. Порогом выведения (порогом реабсорбции)называют концентрацию вещества в крови, при которой оно не может полностью реабсорбироваться и попадает в конечную мочу. Для глюкозы это составляет более 9 ммоль /л, т.к. при этом мощность систем переносчика оказывается недостаточной и сахар поступает в мочу. У здоровых людей это может наблюдаться после поступления больших его количеств (алиментарная (пищевая) глюкозурия).

Реабсорбция аминокислот

Аминокислоты также полностью реабсорбируются клетками проксимального канальца. Существует несколько специальных систем реабсорбции для нейтральных, двухосновных, дикарбоновых аминокислот и иминокислот.

Каждая из этих систем обеспечивает реабсорбцию нескольких аминокислот одной группы:

1 группа-глицин, пролин, оксипролин, аланин, глютаминовая кислота, креатин;

2 группа-двухосновные-лизин, аргинин, орнитин, гистидин, цистин;

3 группа-лейцин, изолейцин.

4 группа - Иминокислоты-органические кислоты, содержащие в молекуле двухвалентную иминогруппу (= NH), гетероциклические иминокислоты пролин и оксипролин входят в состав белков и обычно рассматриваются как аминокислоты.

В пределах каждой системы имеются конкурентные отношения между переносом отдельных аминокислот входящих в данную группу. Поэтому, когда одной аминокислоты много в крови, то переносчик не успевает транспортировать все аминокислоты этого ряда - они выделяются с мочой. Транспорт аминокислот происходит так же, как и глюкозы, т.е. по механизму вторично-активного транспорта.

Реабсорбция белков

За сутки в фильтрат поступает 30-50 г белка. Почти весь белок полностью реабсорбируется в канальцах проксимального отдела нефрона, и у здорового человека в моче только его следы. Белки, в отличие от других веществ, реабсорбируясь попадают в клетки с помощью пиноцитоза. (Молекулы профильтровавшегося белка адсорбируются на поверхностной мембране клетки с образованием, в конечном счете, пиноцитозной вакуоли. Эти вакуоли сливаются с лизосомой, где под влиянием протеолитических ферментов белки расщепляются и их фрагменты переносятся в кровь через базальную цитоплазматическую мембрану). При заболевании почек количество белка в моче возрастает - протеинурия. Она может быть связана либо с нарушением реабсорбции, либо с увеличением фильтрации белка. Может возникать после физической нагрузки.

Выводимые из организма продукты обмена веществ, вредные для организма, активной реабсорбции не подвергаются. Те соединения, которые не способны проникнуть в клетку путем диффузии, совершенно не возвращаются в кровь и выделяются с мочой в максимально концентрированном виде. Это сульфаты и креатинин, их концентрация в окончательной моче в 90-100 раз больше, чем в плазме - это беспороговые вещества. Конечные продукты азотистого обмена (мочевина и мочевая кислота) могут диффундировать в эпителий канальцев, поэтому они частично реабсорбируются, и их концентрационный индекс ниже, чем сульфатов и креатинина.

Из проксимального извитого канальца изотоничная моча попадает в петлю Генле. Сюда поступает примерно 20-30% фильтрата. Известно, что в основе работы петли Генле, дистальных извитых канальцев и собирательных трубочек лежит механизм противоточно-множительной канальцевой системы.

Моча двигается в этих канальцах в противоположных направлениях (почему систему и назвали противоточной), а процессы транспорта веществ в одном колене системы усиливаются (“умножаются”) за счет деятельности другого колена.

Принцип противоточной системы широко распространен в природе и технике. Это технический термин, которым определяют движение двух потоков жидкости или газов в противоположных направлениях, создающие выгодные условия для обмена между ними. Например, в конечностях арктических животных артериальные и венозные сосуды располагаются близко, кровь течет в параллельно расположенных артериях и венах. Поэтому артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу. Контакт между ними оказывается биологически выгодным.

Примерно так устроена и работает петля Генле и остальные отделы нефрона, а механизм противоточно - множительной системы существует между коленами петли Генле и собирательными трубками.

Рассмотрим, как работает петля Генле. Нисходящий отдел располагается в мозговом слое и тянется до вершины почечного сосочка, где изгибается на 180и переходит в восходящий отдел, расположенный параллельно нисходящему. Функциональное значение различных отделов петли неодинаково. Нисходящий отдел петли хорошо проницаем для воды, а восходящий водонепроницаем, но активно реабсорбирует натрий, который повышает осмолярность ткани. Это приводит к еще большему выходу воды из нисходящей части петли Генле по осмотическому градиенту (пассивно).

В нисходящее колено поступает изотоничная моча, а на вершине петли концентрация мочи увеличивается в 6-7 раз за счет выхода воды, поэтому в восходящее колено поступает концентрированная моча. Здесь в восходящем колене происходит активная реабсорбция натрия и всасывание хлора, вода остается в просвете канальца и в дистальный каналец поступает гипотоническая жидкость (200 осмоль/л). Между сегментами колена петли Генле постоянно существует осмотический градиент в 200 миллиосмолей (1 осмоль = 1000 миллиосмоль - количество вещества, которое развивает в 1 литре воды осмотическое давление в 22,4 атм). По всей длине петли суммарное различие осмотического давления (осмотический градиент или перепад) равен 200 миллиосмолей.

Мочевина также циркулирует в поворотно-противоточной системе почки и участвует в сохранении высокой осмолярности в мозговом веществе почки. Мочевина выходит из собирательной трубки (при движении конечной мочи в лоханку). Попадает в интерстиций. Затем секретируется в восходящее колено петли нефрона. Далее поступает в дистальный извитой каналец (с током мочи), и снова оказывается в собирательной трубке. Т.о., циркуляция в мозговом слое является механизмом сохранения высокого осмотического давления, которое создает петля нефрона.

В петле Генле дополнительно реабсорбируется еще 5% от исходного объема фильтрата и из восходящего отдела петли Генле в извитые дистальные канальцы поступает около 15% объема первичной мочи.

Важную роль в сохранении высокого осмотического давления в почке играют прямые почечные сосуды, которые, как и петля Генле, образуют поворотно-противоточную систему. Нисходящие и восходящие сосуды идут параллельно петле нефрона. Кровь, движущаяся по сосудам, проходя через слои с постепенно понижающейся осмолярностью, отдает межклеточной жидкости соли и мочевину и захватывает воду. Т.о. противоточная система сосудов представляет шунт для воды, благодаря чему создаются условия для диффузии растворенных веществ.

Обработка первичной мочи в петле Генле заканчивает проксимальную реабсорбцию мочи, за счет которой из 120 мл/мин первичной мочи в кровь возвращается 100-105 мл/мин, а 17 мл идет дальше.