Общие и специфические метаболические пути. Специфические и общие пути катаболизма. Шизофрения, катехоламины и внутренние нейролептики

В катаболизме различают три стадии:

1). Полимеры превращаются в мономеры (белки – в аминокислоты, углеводы в моносахариды, липиды – в глицерол и жирные кислоты). Химическая энергия при этом рассеивается в виде тепла.

2). Мономеры превращаются в общие продукты, в подавляющем большинстве в ацетил-КоА. Химическая энергия частично рассеивается в виде тепла, частично накапливается в виде восстановленных коферментных форм (НАДН, ФАДН 2), частично запасается в макроэргических связях АТФ (субстратное фосфорилирование).

1-ая и 2-ая стадии катаболизма относятся к специфическим путям, которые уникальны для метаболизма белков, липидов и углеводов.

3). Заключительный этап катаболизма, сводится к окислению ацетил-КоА до СО 2 и Н 2 О в реакциях цикла трикарбоновых кислот (цикла Кребса) – общий путь катаболизма. Окислительные реакции общего пути катаболизма сопряжены с цепью тканевого дыхания. При этом энергия (40-45%) запасается в виде АТФ (окислительное фосфорилирование).

В результате специфических и общих путей катаболизма биополимеры (белки, углеводы, липиды) распадаются до СО 2 , Н 2 О иNH 3 , которые являются основными конечными продуктами катаболизма.

Метаболиты в норме и при патологии

В живой клетке ежесекундно образуются сотни метаболитов. Однако их концентрации поддерживаются на определенном уровне, который является специфической биохимической константой или референтной величиной. При болезнях происходит изменение концентрации метаболитов, что является основой биохимической лабораторной диагностики. К нормальным метаболитам относят глюкозу, мочевину, холестерол, общий белок сыворотки крови и ряд других. Выход концентрации этих веществ за пределы физиологических норм (повышение либо снижение) говорит о нарушении их обмена в организме. Более того, ряд веществ в организме здорового человека обнаруживается только в определенных биологических жидкостях, что обуславливается спецификой их метаболизма. Например, белки сыворотки крови в норме не проходят через почечный фильтр и, соответственно, не обнаруживаются в моче. Но при воспалении почек (гломерулонефрите) белки (в первую очередь альбумины) проникают через капсулу клубочка, появляются в моче – протеинурия и трактуются как патологические компоненты мочи.

Патологическими метаболитами являются миеломные белки (белки Бенс-Джонса), парапротеины при макроглобулинемии Вальденштрема, накопление аномального гликогена при гликогенозах, разнообразных фракций сложных липидов при сфинголипидозах и т.д. Они обнаруживаются только при болезнях и для здорового организма не характерны.

Уровни изучения обмена веществ

Уровни изучения обмена веществ:

    Целый организм.

    Изолированные органы (перфузируемые).

    Срезы тканей.

    Культуры клеток.

    Гомогенаты тканей.

    Изолированные клеточные органеллы.

    Молекулярный уровень (очищенные ферменты, рецепторы и т.д.).

Довольно часто для изучения метаболизма используют радиоактивные изотопы (3 H, 32 P, 14 C, 35 S, 18 O), которыми помечают вещества, вводимые в организм. Затем можно проследить клеточную локализацию этих веществ, определить период полураспада и их метаболические пути.

Рис. 8.1. Схема специфических и общих путей катаболизма

В отличие от многообразия макромира (мира больших и видимых невооруженным глазом существ) мир микробов характеризуется относительным однообразием. Существующие в настоящее время более 3000 различных видов бактерий, но своему внешнему виду подразделяются на 3 основные формы:

Шаровидные или эллипсовидные (кокки) размерами от 1 до 2 микрон (рис. 1.3). Кокки относятся к наиболее простой форме бактерий; они могут соединяться друг с другом, образуя диплококки (по две), тетра-кокки (по четыре) и стрептококки (цепочки); - палочковидные или цилиндрические размерами от 1 до 5 микро (рис. 1.4). Они также способны соединяться друг с другом попарно ив цепочку и дают большое разнообразие форм бактерий (диплобактерии, диплобациллы, стрептобациллы, стрептобактерии); - Извитые или спириллы размерами от 1 до 30 микрон.

Микроорганизмы-деструкторы . Ведущая роль в трансформации и минерализации органических ксенобиотиков принадлежит хемоорганотрофным (гетеротрофным) микроорганизмам, особенно бактериям, синтезирующим разнообразные ферментные системы.

Из бактерий, расщепляющих органические ксенобиотики, по частоте встречаемости, числу видов (около 30) и спектру разрушаемых соединений первое место занимают псевдомонады.

Биодеградирующая активность сообщества микроорганизмов зависит от его состава, скорости роста и обмена между видами питательными веществами и генетическим материалом. Накапливаемые метаболиты могут быть токсичны для одного компонента сообщества и могут усваиваться другими микроорганизмами, что ускоряет в совокупности процесс разложения (феномен детоксификации).

Учитывая способы получения биологических объектов - деструкторов ксенобиотиков, возможны два варианта биоочистки и биоремедиации. Первый вариант - для участков с застарелыми загрязнениями, где почти всегда обитает дикая, аборигенная микрофлора, способная их трансформировать. Такие загрязнения можно удалять in situ (по месту) без внесения биопрепаратов. При этом биодеградация лимитируется факторами окружающей среды и свойствами загрязнения, такими как содержание кислорода в среде, растворимость вещества-загрязнителя и др. Второй вариант - предварительно получают биологически активный штамм, накапливают жизнеспособные клетки, которые вносят в виде биопрепарата в загрязненную среду. Этот вариант целесообразно применять в северных регионах и при обработке мест с незастарелыми загрязнениями;



Способность микроорганизмов разрушать ксенобиотик или другой поллютант зависит от наличия в клетках генов, определяющих синтез ферментов, участвующих в деградации соединения. Конструирование рекомбинантных штаммов - деструкторов ксенобиотиков заключается в объединении нескольких генов или их блоков, ответственных за первичный метаболизм соединений. Преимущество такого объединения - генетически модифицированные микроорганизмы (ГММО) могут синтезировать различные ферментые системы, что позволяет эффективно и быстро разрушать широкий спектр химических загрязнений.

Биологическая очистка сточных вод. Принципиальные схемы очистных сооружении. Основные принципы работы, методы и сооружения аэробной и анаэробной биологической очистки сточных вод и переработки промышленных отходов.

Классификация биологических методов очистки. Биологические методы очистки применяются для очистки хозяйственно-бытовых и промышленных сточных вод (рис.2.1) от многих растворенных органических и некоторых неорганических веществ (сероводорода, сульфидов, аммиака, нитратов и др.). Процесс очистки основан на способности микроорганизмов использовать эти вещества для питания. Контактируя с органическими веществами микроорганизмы частично разрушают их, превращая в воду, диоксид углевода, нитрит-, сульфатионы и др. Органические вещества для микроорганизмов являются источником углерода. Разрушение органических веществ с помощью микроорганизмов называют биохимическим окислением.

Анаэробные микробиологические процессы осуществляются при минерализации как растворенных органических веществ, так и твердой фазы сточных вод. Анаэробные процессы протекают в замедленном темпе, идут без доступа кислорода, используются, главным образом, для сбраживания осадков. Аэробный метод очистки основан на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и температура 20-40°С.

Доступность какого-либо вещества биологическому окислению может быть оценена величиной биохимического показателя, под которым понимают отношение величин полного БПК (БПК полн) и ХПК. Биохимический показатель является параметром, необходимым для расчёта и эксплуатации промышленных биологических сооружений для очистки сточных вод. При величине биохимического показателя равном или более 0,5, вещества поддаются биохимическому окислению. Величина биохимического показателя колеблется в широких пределах для различных групп сточных вод. Промышленные сточные воды имеют низкий показатель (0,05 – 0,3), бытовые сточные воды – свыше 0,5.

Сооружения биологической очистки сточных вод. Основными сооружениями биохимической очистки служат аэротенки и вторичные отстойники.

Аэротенк представляет собой аппарат с постоянно протекающей сточной водой, во всей толще которой развиваются аэробные микроорганизмы, потребляющие субстрат, т.е. "загрязнение" этой сточной воды. Биологическая очистка сточных вод в аэротенках происходит в результате жизнедеятельности микроорганизмов активного ила. Сточная вода непрерывно перемешивается и аэрируется до насыщения кислородом воздуха. Активный ил представляет собой суспензию микроорганизмов, способную к флокуляции.

Существует также классификация аэротенков по величине "нагрузки" на активный ил: высоконагружаемые (аэротенки на неполную очистку), обычные и низконагружаемые (аэротенки продленной аэрации). Большое значение в конструкции аэротенков имеет система аэрации. Аэрационные системы предназначены для подачи и распределения кислорода или воздуха в аэротенке, а также поддержания активного ила во взвешенном состоянии.

Аэротенки-смесители (аэротенки полного смешения, рис.2, раздаточный материал) характеризуются равномерной подачей по длине сооружения исходной воды и активного ила и равномерным отводом иловой смеси. Полное смешение в них сточных вод с иловой смесью обеспечивает выравнивание концентраций ила и скоростей процесса биохимического окисления, поэтому аэротенки-смесители более приспособлены для очистки концентрированных производственных сточных вод (БПК полное до 1000 мг/л) при резких колебаниях их расхода, состава и количества загрязнений.

Аэротенки-вытеснители . В отличие от аэротенков других типов (аэротенков-смесителей и аэротенков промежуточного типа), аэротенки-вытеснители (рис.2. , раздаточный материал) представляют собой сооружения, в которых очищаемая сточная вода постепенно перемещается от места впуска к месту ее выпуска. При этом практически не происходит активного перемешивания поступающей сточной воды с ранее поступившей. Процессы, протекающие в этих сооружениях, характеризуются переменной скоростью реакции, поскольку концентрация органических загрязнений уменьшается по ходу движения воды. Аэротенки-вытеснители весьма чувствительны к изменению концентрации органических веществ в поступающей воде, особенно к залповым поступлениям со сточными водами токсических веществ, поэтому такие сооружения рекомендуется применять для очистки городских и близких по составу к бытовым промышленных сточных вод.

Аэротенки с рассредоточенным впуском (рис.2, раздаточный материал) сточной воды занимают промежуточное положение между смесителями и вытеснителями; их применяют для очистки смесей промышленных и городских сточных вод.

Аэротенки можно компоновать с отдельно стоящими вторичными отстойниками или объединять в блок при прямоугольной форме обоих сооружений в плане. Наиболее компактны комбинированные сооружения - аэротенки-отстойники. За рубежом этот тип сооружения круглой в плане формы с механическими аэраторами получил название аэроакселатора. Совмещение аэротенка с отстойником позволяет увеличить рециркуляцию иловой смеси без применения специальных насосных станций, улучшить кислородный режим в отстойнике и повысить дозу ила до 3-5 г/л, соответственно увеличив окислительную мощность сооружения.

Разновидность аэротенка-отстойника – аэроакселатор представляет собой круглое в плане сооружение. Осветленные сточные воды поступают в нижнюю часть зоны аэрации, куда пневматическим или пневмомеханическим способом подается воздух, что обеспечивает процесс биохимического окисления, а также создает циркуляционное движение жидкости в этой зоне и подсос иловой смеси из циркуляционной зоны отстойника. Из зоны аэрации иловая смесь через затопленные регулируемые переливные окна поступает в воздухоотделитель и далее в циркуляционную зону отстойника. Значительная часть иловой смеси через щель возвращается в зону аэрации, а отводимые очищенные сточные воды через слой взвешенного осадка поступают в отстойную зону.

Вторичные отстойники являются составной частью сооружений биологической очистки, располагаются в технологической схеме непосредственно после биоокислителей и служат для отделения активного ила от биологически очищенной воды, выходящей из аэротенков, или для задержания биологической пленки, поступающей с водой из биофильтров. Эффективность работы вторичных отстойников определяет конечный эффект очистки воды от взвешенных веществ. Для технологических схем биологической очистки сточных вод в аэротенках вторичные отстойники в какой-то степени определяют также объем аэрационных сооружений, зависящий от концентрации возвратного ила и степени его рециркуляции, способности отстойников эффективно разделять высококонцентрированные иловые смеси.

Иловая смесь, поступающая из аэротенков во вторичные отстойники, представляет собой гетерогенную (многофазную) систему, в которой дисперсионной средой служит биологически очищенная сточная вода, а основным компонентом дисперсной фазы являются хлопки активного ила, сформированные в виде сложной трехуровневой клеточной структуры, окруженной экзоклеточным веществом биополимерного состава.

Анаэробную очистку используют для удаления загрязнений из сточных вод, в качестве первой ступени очистки сточных вод с высокой концентрацией ор­ганических загрязнений (БПК n > 4-5 г/л), а также для переработки активного ила, других осадков и твердых отходов. Многие твердые отходы содержат целлюлозу, легче поддающуюся анаэробному разложению с образова­нием биогаза, чем аэробному окислению.

В ходе метаногенерации (метаногенеза) - анаэробного процесса с образова­нием метана - органические загрязнения конвертируются в биогаз, содержащий в основном СН 4 и С0 2 . Его можно использовать в качестве топлива. Количество выделяемого биогаза достаточно не только для компенсации энергетических за­трат на анаэробное разложение, но и для использования сторонними потреби­телями - в котельных или нагревателях для получения пара и горячей воды, в стационарных газогенераторах для получения электроэнергии с рекупера­цией тепла, в технологических процессах термосушки и сжигания осадков и др.

Биоценозы и биохимические процессы при анаэробной очистке. Формирование ценозов . Анаэробные биоценозы при очистке сточных вод могут представлять собой флокулы, биопленки и гранулы ила. Они развиваются в экосистемах с домини­рованием аноксигенных и анаэробных условий, в которых протекают процессы брожения, аноксигенного окисления (анаэробного дыхания) и метанообразования.

Аноксигенное окисление органических субстратов включает процессы де- нитрификации и сульфатредукции, протекающие при наличии ионов N0 3 , - N0 2 - , S0 4 2- и, как правило, при отсутствии кислорода. Эти процессы использу­ются для удаления соединений азота и серы из сточных вод.

Основной процесс, который происходит в анаэробных условиях и исполь­зуется для разложения и удаления органических загрязнений и отходов, - метаногенез. В процессе метаногенерации (часто называемым «метановым брожением») происходит разложе­ние органических субстратов и загрязнений, обеззараживание и детоксикация стоков. В природе этот процесс протекает в различных средах с анаэробными условиями, в рубце жвачных животных, в термитниках.

Метаногенерация - сложный, многостадийный процесс, в котором исхо­дные органические вещества последовательно превращаются в более простые с переходом значительной части углерода в метан и углекислый газ и в иловую жидкость. Метановое разложение включает три стадии анаэробного брожения (рис.5.1): гидролиза, кислотную (ацидогенную), ацетогенную и четвертую, метаногенную стадию (стадию газообразования).

В первой стадии брожения принимают участие микроорганизмы-гидролитики, обладающие целлюлолитической, протеолитической, амилолитической, липолитической, аммонифицирующей активностями. Содержащиеся в среде нитраты и сульфаты восстанавливаются бактериями-денитрификаторами и сульфатредукторами. В результате ферментативного гидролиза целлюлоза и гемицеллюлозы, белки, жиры и другие компоненты гидролизуются с образо­ванием жирных кислот, глицерина, пептидов, аминокислот, моно- и дисахаров и в небольшом количестве уксусной кислоты, метанола, аммиака, водоро­да. В гидролизе участвуют бактерии pp. Clostridium, Bacillus, а также Bacteroides, Butyrivibrio, Cellobacterium, Eubacterium, Bifidobacterium, Lactobacillus, Selenomonas. На ацидогенной стадии протекают различные пилы брожения: спиртовое, маслянокислое, ацетоно-бутиловое, пропионовое и другие, в ходе которых бактерии-ацидогены сбраживают образующиеся продукты гидролиза, напри­мер глюкозу, до органических кислот:


Потребляя моно- и олигосахариды, аминокислоты и другие промежуточные продукты гидролиза, эти бактерии тем самым предотвращают ингибированис продуктами гидролиза гидролитических ферментов, участвующих в первой фазе брожения.

В результате расщепления на первых двух стадиях 70-80% из образующихся органических продуктов составляют высшие жирные кислоты, до 20% - аце­тат и 3-5% - водород. Среди других продуктов - изомасляная, фенилуксусная, бензойная, индолилбензойная кислоты, NH 4 + , H,S, бутанол, пропанол, С0 2 и др.

На ацетогенной стадии брожения гетероацетогенные бактерии (ацетогены) pp. Clostridium, Syntrophus и других переводят органические кислоты, например пропионовую и масляную,прочие продукты ацидогенеза в уксусную кислоту:

Основную роль в метановом разложении играет заключительная стадия, выполняемая строгими анаэробами - метанообразуюшими бактериями. Они более чувствительны к условиям среды. Время генерации клеток метаногенов составляет несколько суток. Их ак­тивность максимальна при рН среды от 6,8 до 7,5. При более низких и высоких значениях рН развитие метаногенов замедляется либо прекращается совсем.

Продукт реакций метаногенной стадии - СН 4 . Образование его возмож­но двумя путями. Метаногенные бактерии-литотрофы (pp. Methanococcus, Methanobacterium, Methanospirillum, Methanomicrobium, Methanogenium, Methanothermus, Methanobrevibacter) потребляют в качестве субстрата Н 2 и С0 2 , а также СО и формиат:

С0 2 + 4Н 2 → СН 4 + 2Н 2 0

4НСООН → СН 4 + ЗС0 2 + 2Н,0

4СО + 2Н 2 0 → СН 4 + ЗС0 2

Микроорганизмы-ацетотрофы (pp. Methanosarcina, Melhanosaeta, Methano- planus) используют ацетат, метанол, метиламин:

CH 3 СООН → CH 4 + CО 2

4СН 3 ОН → ЗСН 4 + С0 2 + 2Н 2 0

4CH 3 NH 2 + 2Н 2 0 → ЗСН 4 + 4NH 3 + СО

Вследствие разрушения органических кислот рН среды повышается, реак­ция среды становится шелочной, поэтому метаногенную стадию иногда назы­вают «щелочным брожением».

При разложении уксусной кислоты образуется 70-75% метана, а остальные 25-30% - в результате синтеза из углекислоты и водорода и протекания других реакций. Соотношение конечных продуктов в процессе метанового брожения зависит от состава среды, условий ферментации и присутствующей микрофло­ры.

Большим стимулом к развитию многих из современных методов анаэробной очистки послужило обнаружение в середине 1970-х гг. способности микроорганиз­мов, входящих в состав метаногенного сообщества, образовывать агрегаты - грану­лы (пеллеты) при росте в анаэробном реакторе в условиях восходящего потока (рис. 5,2 раздаточный материал).

Особую роль в формировании и функционировании гранул выполняют метаногенные бактерии Methanosaeta concilii (Methanothrix soehngenii), а также Methanosarcina spp. Бактерии p. Methanosaeta образуют хворосто- и клубкообразные структуры (рис. 5.3), внутри которых группи­руются микроколонии бактерий Methanosarcina (рис. 5.4). Благодаря этому формируются агрегаты в виде плотных легко оседаю­щих гранул размером 1-5 мм.

К сооружениям традиционных конструкций относятся септитенки, осветлители-перегниватели, контактные реакторы, анаэробные лагуны, метантенки, анаэ­робные биофильтры с восходящим потоком жидкости (см.раздаточный материал, рис. 3.5).

Септитенк (септик) представляет собой аппарат, состоящий из двух частей: отстойной и септической (рис. 6.1). В первой части происходит осветление воды вследствие движения ее с малой скоростью, а во второй части, располо­женной под первой, - перегнивание осадка при хранении его в течение 6-12 мес. Отстойная и септическая части септика не разделены между собой. Продолжи­тельность нахождения воды в септике - 3-4 сут. Септики применяются, если количество сточных вод не превышает 25 м 3 /сут.

Септитенки часто используются для сбраживания активного ила вторичных отстойников, осадков первичных отстойников и пены с целью накопления осад­ка, уменьшения его объема, дурного запаха и количества патогенной микрофло­ры. Септики являются наиболее распространенными очистными сооружения­ми для индивидуальных домохозяйств, поскольку могут работать автономно и не нуждаются в электропитании.

Осветлители-перегниватели, которые можно рассматривать как разновид­ность септитенка, применяют на станциях очистки сточных вод с пропускной способностью до 30000 м 5 /сут. На рис. .2 приведена конструкция осветлителя - перегнивателя, выполненного в виде комбинированного сооружения, состоя­щего из осветлителя, концентрически располагаемого внутри перегнивателя.

Метод анаэробной очистки в контактном реакторе был одним из первых, широко применяемых в промышленности с начала 1930-х гг., в частности, для об­работки стоков сахарных, спиртовых и дрожжевых производств. По сравнению с септитенком контактный реактор намного производительнее, поскольку в нем предусматривается перемешивание среды с анаэробным илом и поддерживается более высокая концентрация ила за счет возврата его части из вторичного отстой­ника (см.раздаточный материал к лекции3, рис. 3.5), т. е. аналогично тому, как это реализуется в аэротенке с вторичным отстойником. Для повышения эффективности разделения иловая жидкость перед вторичным отстойником может дополнительно подвергаться дега­зации (в отдельной емкости) или охлаждению. При дегазации газ удаляют механи­ческим (гидравлическим) способом или действием вакуума. Охлаждение приводит к замедлению процессов метанообразования и, как следствие, образования новых пузырьков, что улучшает седиментационные свойства анаэробного ила.

Традиционными и наиболее распространенными аппаратами для проведения анаэробного разложения являются метантенки. Они используются для сбражива­ния стоков с высокой концентрацией загрязнений и разложения органических от­ходов, в частности, активного ила очистных сооружений.

Метантенки работают с обогревом, как правило, в периодическом режиме загрузки отходов или сточных вод, с постоянным отбором биогаза и выгрузкой твердого осадка по мере завершения процесса. Их изготавливают из стали, бетона, пластмасс, кирпича; они различаются формой резервуара, количеством камер сбраживания, способом за­грузки, выгрузки субстрата, способами обогрева и перемешивания.

Метантенки большого объема изготавливают в виде вертикальных резервуа­ров цилиндрической или эллипсоидной формы с принудительным перемеши­ванием сбраживаемой массы, они рассчитаны на избыточное давление газа до 5 кПа. Небольшие биогазовые установки могут представлять собой цилиндриче­ские горизонтальные или вертикальные биореакторы с механическим переме­шиванием, частично или полностью заглубленные в грунт для снижения тепло- потерь. Конструкция биореакторов должна обеспечивать возможность полного опорожнения резервуара, поэтому днише часто выполняется скошенным, по­лусферическим или в форме конуса.

Метантенки с неподвижным незатопленным перекрытием имеют недо­статок, свойственный сооружениям с жесткими перекрытиями - непосто­янство давления внутри реактора. При выгрузке осадка внутри метантенка может образоваться вакуум, а при загрузке повыситься давление. Это приво­дит к разрушению конструкций, образованию трещин.

Преимущества метантенка с плавающим перекрытием: 1) взрывобезопасность, так как независимо от наполнения метантенка в нем поддерживается положительное давление газа, что исключает воз­можное попадание воздуха внутрь сооружения; 2)по положению плавающего перекрытия можно осуществить дозировку загрузки и выгрузки; 3)облегчается борьба с образованием корки.

Роль перемешивания и температурного режима в метатенках.Метантенки всех типов могут работать в мезофильном (20-45 °С, обычно 30-35 °С) и термофильном (50-60 °С) температурных режимах. Режим сбра­живания выбирают с учетом методов последующей обработки и утилизации осадков, а также санитарных требований. Мезофильный режим использу­ется чаше, поскольку он является менее энергозатратным и более эконо­мически выгодным, допускает существование большего числа видов микро­организмов и поэтому более стабилен, менее чувствителен к изменениям условий окружающей среды; осадки в этом режиме после переработки обе­звоживаются лучше по сравнению с термофильным процессом. Однако при термофильном режиме скорость распада органических соединений выше (примерно в 2 раза) и выше степень их распада, достигается практически полная дегельминтизация осадков, что важно, если осадки используются в качестве рекультиванта или удобрения для почвы. Продолжительность сбра­живания при мезофильном режиме 20-30 сут., при термофильном - около 10 сут. Теплотворная способность газа при термофильном сбраживании на 5% ниже, чем при мезофильном.

Для более полного проведения процесса метаногенерации необходимо тща­тельное перемешивание содержимого метантенка, чтобы обеспечить равно­мерное распределение содержимого реактора, необходимые условия массо- и теплообмена, свести к минимуму слипание, образование пены и корки, фор­мирование придонного осадка, удалить газы. Для перемешивания в метантенке используют механические мешалки, циркуляционные насосы, гидроэлеваторы или комбинацию этих систем.

Оптимальная концентрация взвешенных веществ в метантенке, при кото­рой наблюдается высокая интенсивность метанообразования, находится в ин­тервале 2-10%. При концентрации твердых частиц выше 10-12% перемешива­ние среды затрудняется, и это приводит к снижению газовыделения. В таких случаях применяются специ&чьные конструкции биореакторов, обеспечиваю­щие необходимый уровень перемешивания.

Метанообразование протекает с максимальной скоростью при рН от 6 до 8. При понижении рН ниже 5,5 (в случае «закисания» метантенка) активность метаногенных бактерий прекращается. Как правило, рН не регулируют вследствие высокой буферной емкости среды. Но при закислении среды наилучшим ней­трализующим средством является раствор NaHC0 3 .

Процесс метаногенеза замедляется в присутствии различных детерген­тов (при их концентрации около 15 мг/л), антибиотиков и других веществ. Из анионогенных ПАВ сравнительно полно распадаются и слабо тормозят процесс сбраживания алкилсульфаты, хлорный сульфанол; трудно поддаются распаду и сильно тормозят сбраживание сульфанолы.

Анаэробные реакторы устойчивы к длительным перерывам в подаче сточ­ной воды, изменениям химического состава поступающих стоков, что позво­ляет эффективно использовать их для очистки стоков сезонных производств, а также в режимах малых нагрузок. В случае снижения метаногенной активности для ее восстановления можно снижать скорость подачи субстрата, подщелачивать среду химическими веще­ствами, разбавлять стоки водой, удалять токсические соединения путем пред­варительной обработки стоков.

Бактериальное выщелачивание химических элементов из руд, концентратов и горных пород, обогащение руд, биосорбция металлов из растворов. Удаление серы из нефти и угля. Повышение нефтеотдачи. Удаление метана из угольных пластов. Подавление биокорозии нефтепродуктов.

Исследования по бактериальному окислению железа и выщелачиванию металлов начаты после выделения в 50-х годах ХХ века из дренажных кислых вод угольной шахты микроорганизмов, способных принимать участие в окислении двухвалентного железа до трехвалентного – бактерий Acidithiobaccilus ferrooxidans (ранее называвшихся Thiobaccilus ferrooxidans). Бактерии, участвующие в выщелачивании металлов, по типу питания относятся к хемоавтотрофным, для получения энергии катализирующие химические окислительно-восстановительные реакции и ассимилирующие углекислый газ для конструктивного обмена клеток, т.е. питающихся автономно, без использования органики.

Кучное биовыщелачивание сульфидных руд .

В последние годы для подготовки упорного сырья к цианированию начали использовать чановое бактериальное выщелачивание концентратов или руд. В мире уже действует более десятка промышленных предприятий, практикующих эту технологию, но капитальные затраты для такой технологии весьма высоки, поэтому для малых и средних месторождений не оправданы.

Использование строго ацидофильных бактерий предполагает, что величина рН пульпы или раствора 2 и ниже. Если для выщелачивания используют бактерий A. ferrooxidans, то процесс биологического окисления минералов может идти двумя путями: эти бактерии не только окисляют серные соединения, но и способны для получения энергии окислять закисные формы железа до окисных. Время обработки зависит от состава сульфидной руды, формы и распределения металла в руде и количества доступной для микроорганизмов серы. Существует также ряд более узких проблем, например, токсичность высоких концентраций добываемых тяжелых ценных металлов для некоторых видов или штаммов выщелачивающих микроорганизмов.

Таким образом, одним из подходов к совершенствованию и развитию технологии и методов биовыщелачивания является подбор бактерий и архей, устойчивых к токсичности металлов. Другими критериями подбора культур являются: простота работы с ними в промышленных условиях, активность в окислении минеральных соединений, отношение к рН, температуре, режиму аэрации и возможность стимулировать их активность внесением дополнительных веществ.

В настоящее время известен ряд родов (групп, подразделяемых по свойствам и систематическому положению) бактерий и архей (два надцарства микроорганизмов), представителей которых способны к выщелачиванию металлов путем окисления сульфидов: Acidothiobacillus, Halothiobacillus, Thiobacillus, Leptospirillum, Acidiphilium, Sulfobacillus, Ferroplasma, Sulfolobus, Metallosphaera и Acidianus. Таким образом развитие технологий биовыщелачивания может опираться как на внесение изменений в организацию процесса (оптимизация аэрации, температурного режима, предподготовки минерального сырья и т.п.), так и в подбор новых микробных культур – с более высокой активностью или проще наращиваемой биомассой, или с более широким спектром рН, температуры и т.п. Традиционное выщелачивание кислыми растворами привело к тому, что поиск новых культур микроорганизмов сосредоточен именно на ацидофильных и суперацидофильных организмах.

Введение в метаболизм (биохимия)

Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых соединений из сложных, обозначают термином - катаболизм. Процесс, идущий в обратном направлении и приводящий, в конечном счете, к образованию сложного продукта из относительно более простых – анаболизм. Анаболические процессы сопровождаются потреблением энергии, катаболические – высвобождением.

Анаболизм и катаболизм не являются простым обращением реакций. Анаболические пути должны отличаться от путей катаболизма хотя бы одной из ферментативных реакций, чтобы регулироваться независимо, и за счет контроля активности этих ферментов регулируется суммарная скорость распада и синтеза веществ. Ферменты, которые определяют скорость всего процесса в целом, называются ключевыми.

Более того, путь по которому идет катаболизм той или иной молекулы, может быть непригодным для ее синтеза по энергетическим соображениям. Например, протекающие в печени расщепление глюкозы до пирувата представляет собой процесс, состоящий из 11 последовательных стадий, катализируемых специфическими ферментами. Казалось бы, синтез глюкозы из пирувата должен быть простым обращением всех этих ферментативных стадий её распада. Такой путь представляется на первый взгляд и самым естественным, и наиболее экономичным. Однако в действительности биосинтез глюкозы (глюконеогенез) в печени протекает иначе. Он включает лишь 8 из 11 ферментативных стадий, участвующих в ее распаде, а 3 недостающие стадии заменены в нем совсем другим набором ферментативных реакций, свойственным только этому биосинтетическому пути. Кроме того, реакции катаболизма и анаболизма часто разделены мембранами и протекают в разных компартментах клеток.


Таблица 8.1. Компартментализация некоторых метаболических путей в гепатоците

Компартмент

Метаболические пути

Цитозоль

Гликолиз, многие реакции глюконеогенеза, активация аминокислот, синтез жирных кислот

Плазматическая мембрана

Энергозависимые транспортные системы

Репликация ДНК, синтез различных видов РНК

Рибосомы

Синтез белка

Лизосомы

Изоляция гидролитических ферментов

Комплекс Гольджи

Образование плазматической мембраны и секреторных пузырьков

Микросомы

Локализация каталазы и оксидаз аминокислот

Эндоплазматическая сеть

Синтез липидов

Митохондрии

Цикл трикарбоновых кислот, цепь тканевого дыхания, окисление жирных кислот, окислительное фосфорилирование

Метаболизм выполняет 4 функции:

1. снабжение организма химической энергией, полученной при расщеплении богатых энергией пищевых веществ;

2. превращение пищевых веществ в строительные блоки, которые используются в клетке для биосинтеза макромолекул;

3. сборка макромолекулярных (биополимеры) и надмолекулярных структур живого организма, пластическое и энергетическое поддержание его структуры;

4. синтез и разрушение тех биомолекул, которые необходимы для выполнения специфических функций клетки и организма.


Метаболический путь – это последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образующиеся в процессе превращения, называют метаболитами, а последнее соединение метаболического пути – конечным продукт. Примером метаболического пути является гликолиз, синтез холестерина.

Метаболический цикл – это такой метаболический путь, один из конечных продуктов которого идентичен одному из соединений вовлеченных в этот процесс. Наиболее важными в организме человека метаболическими циклами являются цикл трикарбоновых кислот (цикл Кребса) и орнитиновый цикл мочевинообразования.

Почти все метаболические реакции в конечном итоге связаны между собой, поскольку продукт одной ферментативной реакции служит субстратом для другой, которая в данном процессе играет роль следующей стадии. Таким образом, метаболизм можно представить в виде чрезвычайно сложной сети ферментативных реакций. Если поток питательных веществ в какой-нибудь одной части этой сети уменьшится или нарушится, то в ответ могут произойти изменения в другой части сети, для того чтобы это первое изменение было как-то уравновешено или скомпенсировано. Более того, и катаболические и анаболические реакции отрегулированы таким образом, чтобы они протекали наиболее экономично, то есть с наименьшей затратой энергии и веществ. Например, окисление питательных веществ в клетке совершается со скоростью, как раз достаточной для того, чтобы удовлетворить ее энергетические потребности в данный момент.

Специфические и общие пути катаболизма

В катаболизме различают три стадии:

1. Полимеры превращаются в мономеры (белки – в аминокислоты, углеводы в моносахариды, липиды – в глицерол и жирные кислоты). Химическая энергия при этом рассеивается в виде тепла.

2. Мономеры превращаются в общие продукты, в подавляющем большинстве в ацетил-КоА. Химическая энергия частично рассеивается в виде тепла, частично накапливается в виде восстановленных коферментных форм (НАДН, ФАДН2), частично запасается в макроэргических связях АТФ (субстратное фосфорилирование).

1-ая и 2-ая стадии катаболизма относятся к специфическим путям, которые уникальны для метаболизма белков, липидов и углеводов.

3. Заключительный этап катаболизма, сводится к окислению ацетил-КоА до СО 2 и Н 2 О в реакциях цикла трикарбоновых кислот (цикла Кребса) – общий путь катаболизма. Окислительные реакции общего пути катаболизма сопряжены с цепью тканевого дыхания. При этом энергия (40–45%) запасается в виде АТФ (окислительное фосфорилирование).


В результате специфических и общих путей катаболизма биополимеры (белки, углеводы, липиды) распадаются до СО 2 , Н 2 О и NH 3 , которые являются основными конечными продуктами катаболизма.

Метаболиты в норме и при патологии

В живой клетке ежесекундно образуются сотни метаболитов. Однако их концентрации поддерживаются на определенном уровне, который является специфической биохимической константой или референтной величиной. При болезнях происходит изменение концентрации метаболитов, что является основой биохимической лабораторной диагностики. К нормальным метаболитам относят глюкозу, мочевину, холестерол, общий белок сыворотки крови и ряд других. Выход концентрации этих веществ за пределы физиологических норм (повышение либо снижение) говорит о нарушении их обмена в организме. Более того, ряд веществ в организме здорового человека обнаруживается только в определенных биологических жидкостях, что обуславливается спецификой их метаболизма. Например, белки сыворотки крови в норме не проходят через почечный фильтр и, соответственно, не обнаруживаются в моче. Но при воспалении почек (гломерулонефрите) белки (в первую очередь альбумины) проникают через капсулу клубочка, появляются в моче – протеинурия и трактуются как патологические компоненты мочи.

Патологическими метаболитами являются миеломные белки (белки Бенс-Джонса), парапротеины при макроглобулинемии Вальденштрема, накопление аномального гликогена при гликогенозах, разнообразных фракций сложных липидов при сфинголипидозах и т.д. Они обнаруживаются только при болезнях и для здорового организма не характерны.

Уровни изучения обмена веществ

Уровни изучения обмена веществ:

1. Целый организм.

2. Изолированные органы (перфузируемые).

3. Срезы тканей.

4. Культуры клеток.

5. Гомогенаты тканей.

6. Изолированные клеточные органеллы.

7. Молекулярный уровень (очищенные ферменты, рецепторы и т.д.).


Довольно часто для изучения метаболизма используют радиоактивные изотопы (3 H, 32 P, 14 C, 35 S, 18 O), которыми помечают вещества, вводимые в организм. Затем можно проследить клеточную локализацию этих веществ, определить период полураспада и их метаболические пути.

Рис. 8.1. Схема специфических и общих путей катаболизма

Глава 9. Биологические мембраны

Клетка представляет биологическую систему, основу которой составляют мембранные структуры, отделяющие клетку от внешней среды, формирующие ее отсеки (компартменты), а также обеспечивающие поступление и удаление метаболитов, восприятие и передачу сигналов и являющиеся структурными организаторами метаболических путей.

Согласованное функционирование мембранных систем – рецепторов, ферментов, транспортных механизмов помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды.

Мембраны – нековалентные надмолекулярные структуры. Белки и липиды в них удерживаются вместе множеством нековалентных взаимодействий (кооперативных по характеру).


К основным функциям мембран можно отнести:

1. отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков);

2. контроль и регулирование транспорта огромного разнообразия веществ через мембраны (избирательная проницаемость);

3. участие в обеспечении межклеточных взаимодействий;

4. восприятие и передача сигнала внутрь клетки (рецепция);

5. локализация ферментов;

6. энерготрансформирующая функция.


Мембраны асимметричны в структурном и функциональном отношениях (углеводы локализуются всегда снаружи и их нет на внутренней стороне мембраны). Это динамичные структуры: входящие в их состав белки и липиды могут двигаться в плоскости мембраны (латеральная диффузия). Однако существует и переход белков и липидов с одной стороны мембраны на другую (поперечная диффузия, флип-флоп), которая происходит крайне медленно. Подвижность и текучесть мембран зависят от её состава: соотношениям насыщенных и ненасыщенных жирных кислот, а также холестерола. Текучесть мембраны тем ниже, чем выше насыщенность жирных кислот в фосфолипидах и чем больше содержание холестерола. Кроме того, для мембран характерна самосборка.


Общие свойства клеточных мембран:

1. легко проницаемы для воды и нейтральных липофильных соединений;

2. в меньшей степени проницаемы для полярных веществ (сахара, амиды);

3. плохо проницаемы для небольших ионов (Na + , Cl - и др.);

4. характерно высокое электрическое сопротивление;

5. асимметричность;

6. могут самопроизвольно восстанавливать целостность;

7. жидкостность.

Химический состав мембран.

Мембраны состоят из липидных и белковых молекул, относительное количество которых у разных мембран широко колеблется. Углеводы содержатся в форме гликопротеинов, гликолипидов и составляют 0,5%-10% веществ мембраны. Согласно жидкостно-мозаичной модели строения мембраны (Сенджер и Николсон, 1972г.) основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды и гликолипиды. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы растворены в липидном бислое и относительно свободно «плавают в липидном море в виде айсбергов на которых растут деревья гликокаликса».

Липиды мембран.

Мембранные липиды – амфифильные молекулы, т.е. в молекуле есть как гидрофильные группы (полярные головки), так и алифатические радикалы (гидрофобные хвосты), самопроизвольно формирующие бислой, в котором хвосты липидов обращены друг к другу. Толщина одного липидного слоя 2,5 нм, из которых 1 нм приходится на головку и 1,5 нм на хвост. В мембранах присутствуют три основных типа липидов: фосфолипиды, гликолипиды и холестерол. Среднее молярное отношение холестерол/фосфолипиды равно 0,3–0,4, но в плазматической мембране это соотношение гораздо выше (0,8–0,9). Наличие холестерола в мембранах уменьшает подвижность жирных кислот, снижает латеральную диффузию липидов и белков.

Фосфолипиды можно разделить на глицерофосфолипиды и сфингофосфолипиды. Наиболее распространенные глицерофосфолипиды мембран – фосфатидилхолины и фосфатидилэтаноламины. Каждый глицерофосфолипид, например фосфатидилхолин, представлен несколькими десятками фосфатидилхолинов, отличающихся друг от друга строением жирнокислотных остатков.

На долю глицерофосфолипидов приходится 2–8% всех фосфолипидов мембран. Наиболее распространенными являются фосфатидилинозитолы.

Специфические фосфолипиды внутренней мембраны митохондрий – кардиолипины (дифосфатидглицеролы), построенные на основе глицерола и двух остатков фосфатидной кислоты, составляют около 22% от всех фосфолипидов митохондриальных мембран.

В миелиновой оболочке нервных клеток в значительных количествах содержатся сфингомиелины.

Гликолипиды мембран представлены цереброзидами и ганглиозидами, в которых гидрофобная часть представлена церамидом. Гидрофильная группа – углеводный остаток – гликозидной связью присоединен к гидроксильной группе первого углеродного атома церамида. В значительных количествах гликолипиды находятся в мебранах клеток мозга, эпителия и эритроцитов. Ганглиозиды эритроцитов разных индивидуумов различаются строением олигосахаридных цепей и проявляют антигенные свойства.

Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жесткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является полярной головкой.


Функции мембранных липидов.

Фосфо- и гликолипиды мембран, помимо участия в формировании липидного бислоя, выполняют ряд других функций. Липиды мембран формируют среду для функционирования мембранных белков, принимающих в ней нативную конформацию.

Некоторые мембранные липиды – предшественники вторичных посредников при передаче гормональных сигналов. Так фосфатидилинозитолдифосфат под действием фосфолипазы С гидролизируется до диацилглицерола и инозитолтрифосфата, являющихся вторичными посредниками гормонов.

Ряд липидов участвует в фиксации заякоренных белков. Примером заякоренного белка является ацетилхолинэстераза, которая фиксируется на постсинаптической мембране к фосфатитилинозитолу.

Белки мембран.

Мембранные белки отвечают за функциональную активность мембран и на их долю приходится от 30 до 70%. Белки мембран отличаются по своему положению в мембране. Они могут глубоко проникать в липидный бислой или даже пронизывать его – интегральные белки, разными способами прикрепляться к мембране – поверхностные белки, либо, ковалентно контактировать с ней – заякоренные белки. Поверхностные белки почти всегда гликозилированы. Олигосахаридные остатки защищают белок от протеолиза, участвуют в узнавании лигандов и адгезии.


Белки, локализованные в мембране, выполняют структурную и специфические функции:

1. транспортную;

2. ферментативную;

3. рецепторную;

4. антигенную.

Механизмы мембранного транспорта веществ

Различают несколько способов переноса веществ через мембрану:

1. Простая диффузия – это перенос небольших нейтральных молекул по градиенту концентрации без затрат энергии и переносчиков. Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О 2 , стероиды, тиреоидные гормоны. Малые полярные незаряженные молекулы – СО 2 , NH 3 , H 2 O, этанол и мочевина – также диффундируют с достаточной скоростью. Диффузия глицерола идет значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана не проницаема.

2. Облегченная диффузия – перенос вещества по градиенту концентрации без затрат энергии, но с переносчиком. Характерна для водорастворимых веществ. Облегченная диффузия отличается от простой большей скоростью переноса и способностью к насыщению. Различают две разновидности облегченной диффузии:

Транспорт по специальным каналам, образованным в трансмебранных белках (например, катионселективные каналы);

С помощью белков-транслоказ, которые взаимодействуют со специфическим лигандом, обеспечивают его диффузию по градиенту концентрации (пинг-понг) (перенос глюкозы в эритроциты с помощью белка-переносчика ГЛЮТ-1).

Кинетически перенос веществ облегченной диффузией напоминает ферментативную реакцию. Для транслоказ существует насыщающая концентрация лиганда, при которой все центры связывания белка с лигандом заняты, и белки работают с максимальной скоростью. Поэтому скорость транспорта веществ облегченной диффузией зависит не только от градиента концентраций переносимого вещества, но и от количества беков-переносчиков в мембране.

Простая и облегченная диффузия относится к пассивному транспорту, так как происходит без затраты энергии.

3. Активный транспорт – транспорт вещества против градиента концентрации (незаряженные частицы) или электрохимического градиента (для заряженных частиц), требующий затрат энергии, чаще всего АТФ. Выделяют два вида его: первично активный транспорт использует энергию АТФ или окислительно-восстановительного потенциала и осуществляется с помощью транспортных АТФ-аз. Наиболее распространены в плазматической мембране клеток человека Na + ,K +- АТФ-аза, Са 2+ -АТФ-аза, Н + -АТФ-аза.


При вторично активном транспорте используется градиент ионов, созданный на мембране за счет работы системы первично активного транспорта (всасывание глюкозы клетками кишечника и реабсорбция из первичной мочи глюкозы и аминокислот клетками почек, осуществляемые при движении ионов Na + по градиенту концентрации).

Перенос через мембрану макромолекул. Транспортные белки обеспечивают перенос через клеточную мембрану полярных молекул небольшого размера, но они не могут транспортировать макромолекулы, например белки, нуклеиновые кислоты, полисахариды или отдельные частицы.


Механизмы, с помощью которых клетки могут усваивать такие вещества или удалять их из клетки, отличаются от механизмов транспорта ионов и полярных соединений.

1. Эндоцитоз. Это перенос вещества из среды в клетку вместе с частью плазматической мембраны. Путем эндоцитоза (фагоцитоза) клетки могут поглощать большие частицы, такие как вирусы, бактерии или фрагменты клеток. Поглощение жидкости и растворенных в ней веществ с помощью небольших пузырьков называют пиноцитозом.

2. Экзоцитоз . Макромолекулы, например белки плазмы крови, пептидные гормоны, пищеварительные ферменты синтезируются в клетках и затем секретируются в межклеточное пространство или кровь. Но мембрана не проницаема для таких макромолекул или комплексов, их секреция происходит путем экзоцитоза. В организме имеются как регулируемый так и не регулируемый пути экзоцитоза. Нерегулируемая секреция характеризуется непрерывным синтезом секретируемых белков. Примером может служить синтез и секреция коллагена фибробластами для формирования межклеточного матрикса.


Для регулируемой секреции характерны хранение приготовленных на экспорт молекул в транспортных пузырьках. С помощью регулируемой секреции происходят выделение пищеварительных ферментов, а также секреция гормонов и нейромедиаторов.

Глава 10. Энергетический обмен. Биологическое окисление

Живые организмы с точки зрения термодинамики – открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики. Каждое органическое соединение, поступающее в организм, обладает определенным запасом энергии (Е). Часть этой энергии может быть использована для совершения полезной работы. Такую энергию называют свободной энергией (G). Направление химической реакции определяется значением DG. Если эта величина отрицательна, то реакция протекает самопроизвольно. Такие реакции называются экзергоническими. Если DG положительно, то реакция будет протекать только при поступлении свободной энергии извне – это эндергонические реакции. В биологических системах термодинамически невыгодные эндергонические реакции могут протекать лишь за счет энергии экзергонических реакций. Такие реакции называют энергетически сопряженными.

Важнейшей функцией многих биологических мембран служит превращение одной формы энергии в другую. Мембраны, обладающие такими функциями, называются энергопреобразующими. Любая мембрана, выполняющая энергетическую функцию, способна к превращению химической энергии окисляемых субстратов или АТФ в электрическую энергию, а именно в трансмембранную разность электрических потенциалов (DY) или в энергию разности концентраций веществ, содержащихся в разделенных мембраной растворах, и наоборот. Среди энергопреобразующих мембран, имеющих наибольшее значение, можно назвать внутреннюю мембрану митохондрий, внешнюю цитоплазматическую мембрану, мембраны лизосом и комплекса Гольджи, саркоплазматический ретикулум. Наружная мембрана митохондрий и ядерная мембрана не может превращать одну форму энергии в другую.

Преобразование энергии в живой клетке описывается следующей общей схемой:


Энергетические ресурсы → ΔμI → работа

где ΔμI – трансмембранная разность электрохимических потенциалов иона I. Следовательно, процессы утилизации энергии и совершения за счет нее работы оказываются сопряжены через образование и использование ΔμI. Поэтому данный ион может быть назван сопрягающим ионом. Основным сопрягающим ионом в клетке эукариот является Н + , и соответственно ΔμН + является основной конвертируемой формой запасания энергии. Вторым по значимости сопрягающим ионом является Na + (ΔμNa +). В то время как Сa 2+ , K + и Cl - не используются для совершения какой-либо работы.

Биологическое окисление – это процесс дегидрирования субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Если в роли конечного акцептора выступает кислород, процесс называется аэробным окислением или тканевым дыханием, если конечный акцептор представлен не кислородом – анаэробным окислением. Анаэробное окисление имеет ограниченное значение в организме человека. Основная функция биологического окисления – обеспечение клетки энергией в доступной форме.

Тканевое дыхание – процесс окисления водорода кислородом до воды ферментами цепи тканевого дыхания. Оно протекает по следующей схеме:

Вещество окисляется, если отдает электроны или одновременно электроны и протоны (атомы водорода), или присоединяет кислород. Способность молекулы отдавать электроны другой молекуле определяется окислительно-восстановительным потенциалом (редокс-потенциалом). Любое соединение может отдавать электроны только веществу с более высоким окислительно-восстановительным потенциалом. Окислитель и восстановитель всегда образуют сопряженную пару.


Выделяют 2 типа окисляемых субстратов:

1. Пиридинзависимые – спиртовые или альдегидные – изоцитрат, α-кетоглутарат, пируват, малат, глутамат, β-гидроксиацил-КоА, β-гидроксибутират, – в их дегидрировании участвуют НАД-зависимые дегидрогеназы.

2. флавинзависимые – являются производными углеводородов – сукцинат, ацил-КоА, глицерол-3-фосфат, холин – при дегидрировании передают водород на ФАД-зависимые дегидрогеназы.


Цепь тканевого дыхания – последовательность переносчиков протонов водорода (Н+) и электронов от окисляемого субстрата на кислород, локализованных на внутренней мембране митохондрий.

Рис. 10.1. Схема ЦТД


Компоненты ЦТД:

1. НАД-зависимые дегидрогеназы дегидрируют пиридинзависимые субстраты и акцептируют 2ē и один Н + .

2. ФАД (ФМН) - зависимые дегидрогеназы акцептируют 2 атома водорода (2Н + и 2ē). ФМН – зависимая дегидрогеназа дегидрирует только НАДН, в то время как ФАД-дегидрогеназы окисляют флавинзависимые субстраты.

3. Жирорастворимый переносчик убихинон (кофермент Q, КоQ) – свободно перемещается по мембране митохондрий и акцептирует два атома водорода и превращается в КоQH 2 (восстановленная форма – убихинол).

4. Система цитохромов – переносит только электроны. Цитохромы железосодержащие белки, простетическая группа которых по структуре напоминает гем. В отличие от гема атом железа в цитохроме может обратимо переходить из двух – в трехвалентное состояние (Fe 3+ + ē → Fe 2+). Это и обеспечивает участие цитохрома в транспорте электронов. Цитохромы действуют в порядке возрастания их редокс-потенциала и в дыхательной цепи располагаются следующим образом: b-с 1 -с-а-а 3 . Два последних работают в ассоциации как один фермент цитохромоксидаза аа 3 . Цитохромоксидаза состоит из 6 субъединиц (2 - цитохрома а и 4 - цитохрома а 3). В цитохроме а 3 кроме железа имеются атомы меди и он передает электроны непосредственно на кислород. Атом кислорода при этом заряжается отрицательно и приобретает способность взаимодействовать с протонами с образованием метаболической воды.


Железосерные белки (FeS) – содержат негемовое железо и участвуют в окислительно-восстановительных процессах, протекающих по одноэлектронному механизму и ассоциированы с флавопротеинами и цитохромом b.

Структурная организация цепи тканевого дыхания

Компоненты дыхательной цепи во внутренней мембране михохондрий формируют комплексы:

1. I комплекс (НАДН-КоQН 2 -редуктаза) – принимает электороны от митохондриального НАДН и транспортирует их на КоQ. Протоны транспортируются в межмембранное пространство. Промежуточным акцептором и переносчиком протонов и электронов являются ФМН и железосерные белки. I комплекс разделяет поток электронов и протонов.

2. II комплекс – сукцинат – КоQ - редуктаза – включает ФАД- зависимые дегидрогеназы и железосерные белки. Он транспортирует электроны и протоны от флавинзависимых субстратов на убихинон, с образованием промежуточного ФАДН 2 .

Убихинон легко перемещается по мембране и передает электроны на III комплекс.

3. III комплекс – КоQН 2 - цитохром с - редуктаза – имеет в своем составе цитохромы b и с 1 , а также железосерные белки. Функционирование КоQ с III комплексом приводит к разделению потока протонов и электронов: протоны из матрикса перекачиваются в межмембранное пространство митохондрий, а электроны транспортируются далее по ЦТД.

4. IV комплекс – цитохром а - цитохромоксидаза – содержит цитохромоксидазу и транспортирует электроны на кислород с промежуточного переносчика цитохрома с, который является подвижным компонентом цепи.


Существует 2 разновидности ЦТД:

1. Полная цепь – в нее вступают пиридинзависимые субстраты и предают атомы водорода на НАД-зависимые дегидрогеназы

2. Неполная (укороченная или редуцированная) ЦТД в которой атомы водорода передаются от ФАД-зависимых субстратов, в обход первого комплекса.

Окислительное фосфорилирование АТФ

Окислительное фосфорилирование – процесс образования АТФ, сопряженный с транспортом электронов по цепи тканевого дыхания от окисляемого субстрата на кислород. Электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, поэтому их транспорт по ЦТД сопровождается снижением свободной энергии. В дыхательной цепи на каждом этапе снижение свободной энергии происходит ступенчато. При этом можно выделить три участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии. Эти этапы способны обеспечить энергией синтез АТФ, так как количество выделяющейся свободной энергии приблизительно равно энергии, необходимой для синтеза АТФ из АДФ и фосфата.

Для объяснения механизмов сопряжения дыхания и фосфорилирования выдвинут ряд гипотез.


Механохимическая или конформационная (Грин-Бойера).

В процессе переноса протонов и электронов изменяется конформация белков-ферментов. Они переходят в новое, богатое энергией конформационное состояние, а затем при возвращении в исходную конформацию отдают энергию для синтеза АТФ.


Гипотеза химического сопряжения (Липмана).

В сопряжении дыхания и фосфорилирования участвуют «сопрягающие» вещества. Они акцептируют протоны и электроны и взаимодействуют с Н 3 РО 4 . В момент отдачи протонов и электронов связь с фосфатом становится макроэргической и фосфатная группа передается на АДФ с образованием АТФ путем субстратного фосфорилирования. Гипотеза логична, однако до сих пор не выделены «сопрягающие» вещества.


Хемиоосмотическая гипотеза Питера Митчелла (1961г.)

Основные постулаты этой теории:

1. внутренняя мембрана митохондрий непроницаема для ионов Н + и ОН − ;

2. за счет энергии транспорта электронов через I, III и IV комплексы дыхательной цепи из матрикса выкачиваются протоны;

3. возникающий на мембране электрохимический потенциал является промежуточной формой запасания энергии;

4. возвращение протонов в матрикс митохондрии через протонный канал АТФ синтазы является поставщиком энергии для синтеза АТФ по схеме

АДФ+Н 3 РО 4 →АТФ+Н 2 О

Доказательства хемиоосмотической теории:

1. на внутренней мембране есть градиент Н + и его можно измерить;

2. создание градиента Н + в митохондрии сопровождается синтезом АТФ;

3. ионофоры (разобщители), разрушающие протонный градиент, тормозят синтез АТФ;

4. ингибиторы, блокирующие транспорт протонов по протонным каналам АТФ-синтазы, ингибируют синтез АТФ.

Строение АТФ-синтазы

АТФ-синтаза – интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи и обозначается как V комплекс. АТФ-синтаза состоит из 2 субъединиц, обозначаемых как F 0 и F 1 . Гидрофобный комплекс F 0 погружен во внутреннюю мембрану митохондрий и состоит из нескольких протомеров, образующих канал по которому протоны переносятся в матрикс. Субъединица F 1 выступает в митохондриальный матрикс и состоит из 9 протомеров. Причем три из них связывают субъединицы F 0 и F 1 , образуя своеобразную ножку и являются чувствительными к олигомицину.

Суть хемиоосмотической теории: за счет энергии переноса электронов по ЦТД происходит движение протонов через внутреннюю митохондриальную мембрану в межмембранное пространство, где создается электрохимический потенциал (ΔμН +), который приводит к конформационной престройке активного центра АТФ-синтазы, в результате чего становится возможным обратный транспорт протонов через протонные каналы АТФ-синтазы. При возвращении протонов назад электрохимический потенциал трансформируется в энергию макроэргической связи АТФ. Образовавшаяся АТФ с помощью белка-переносчика транслоказы перемещается в цитозоль клетки, а взамен в матрикс поступают АДФ и Ф н.

Коэффициент фосфорилирования (Р/О) – число атомов неорганического фосфата, включенных в молекулы АТФ, в пересчете на один атом использованного поглощенного кислорода.


Пункты фосфорилирования – участки в дыхательной цепи, где энергия транспорта электоронов используется на генерацию протонного градиента, а затем в ходе фосфорилирования запасается в форме АТФ:

1. 1 пункт – между пиридинзависимой и флавинзависимой дегидрогеназами; 2 пункт – между цитохромами b и с 1 ; 3 пункт – между цитохромами а и а 3 .

2. Следовательно, при окислении НАД-зависимых субстратов коэффициент Р/О равен 3, так как электроны от НАДН транспортируются с участием всех комплексов ЦТД. Окисление ФАД-зависимых субстратов идет в обход I комплекса дыхательной цепи и Р/О равен 2.

Нарушения энергетического обмена

Все живые клетки постоянно нуждаются в АТФ для осуществления различных видов деятельности. Нарушение какого-либо этапа метаболизма, приводящие к прекращению синтеза АТФ, гибельны для клетки. Ткани с высокими энергетическими потребностями (ЦНС, миокард, почки, скелетные мышцы и печень) являются наиболее уязвимыми. Состояния, при которых синтез АТФ снижен объединяют термином «гипоэнергетические». Причины данных состояний можно разбить на две группы:

Алиментарные – голодание и гиповитаминозы В2 и РР – возникает нарушение поставки окисляемых субстратов в ЦТД или синтез коферментов.

Гипоксические – возникают при нарушении доставки или утилизации кислорода в клетке.

Регуляция ЦТД.

Осуществляется с помощью дыхательного контроля.

Дыхательный контроль – это регуляция скорости переноса электронов по дыхательной цепи отношением АТФ/АДФ. Чем меньше это отношение, тем интенсивнее идет дыхание и активнее синтезируется АТФ. Если АТФ не используется, и его концентрация в клетке возрастает, то прекращается поток электронов к кислороду. Накопление АДФ увеличивает окисление субстратов и поглощение кислорода. Механизм дыхательного контроля характеризуется высокой точностью и имеет важное значение, так как в результате его действия скорость синтеза АТФ соответствует потребностям клетки в энергии. Запасов АТФ в клетке не существует. Относительные концентрации АТФ/АДФ в тканях изменяются в узких пределах, в то время как потребление энергии клеткой может изменяться в десятки раз.


Американский биохимик Д. Чанс предложил рассматривать 5 состояний митохондрий, при которых скорость их дыхания ограничивается определенными факторами:

1. Недостаток SH 2 и АДФ – скорость дыхания очень низкая.

2. Недостаток SH 2 при наличии АДФ – скорость ограничена.

3. Есть SH 2 и АДФ – дыхание очень активно (лимитируется только скоростью транспорта ионов через мембрану).

4. Недостаток АДФ при наличии SH 2 – дыхание тормозится (состояние дыхательного контроля).

5. Недостаток кислорода, при наличии SH 2 и АДФ – состояние анаэробиоза.


Митохондрии в покоящейся клетке находятся в состоянии 4, при котором скорость дыхания определяется количеством АДФ. Во время усиленной работы могут пребывать в состоянии 3 (исчерпываются возможности дыхательной цепи) или 5 (недостаток кислорода) – гипоксии.

Ингибиторы ЦТД – это лекарственные препараты, которые блокируют перенос электронов по ЦТД. К ним относят: барбитураты (амитал), которые блокируют транспорт электронов через I комплекс дыхательной цепи, антибиотик антимицин блокирует окисление цитохрома b; монооксид углерода и цианиды ингибируют цитохромооксидазу и блокируют транспорт электронов на кислород.

Ингибиторы окислительного фосфорилирования (олигомицин) – это вещества, которые блокируют транспорт Н + по протонному каналу АТФ-синтазы.

Разобщители окислительного фосфорилирования (ионофоры) – это вещества, которые подавляют окислительное фосфорилирование, не влияя при этом на процесс переноса электронов по ЦТД. Механизм действия разобщителей сводится к тому, что они являются жирорастворимыми (липофильными) веществами и обладают способностью связывать протоны и переносить их через внутреннюю мембрану митохондрий в матрикс, минуя протонный канал АТФ-синтазы. Выделяющаяся при этом энергия рассеивается в виде тепла.

Искусственные разобщители – динитрофенол, производные витамина К (дикумарол), некоторые антибиотики (валиномицин).

Естественные разобщители – продукты перекисного окисления липидов, жирные кислоты с длинной цепью, большие дозы йодсодержащих гормонов щитовидной железы, белки термогенины.

На разобщении дыхания и фосфорилирования базируется терморегуляторная функция тканевого дыхания. Митохондрии бурой жировой ткани продуцируют больше тепла, так как присутствующий в них белок термогенин разобщает окисление и фосфорилировние. Это имеет важное значение в поддержании температуры тела новорожденных.

Биохимические пути адаптации животных и человека к геохимическим условиям среды - это вопрос не об отдельных изолированных организмах, а о приспособляемости особей внутри популяции как ее части. Не только популяцию, но и особь необходимо рассматривать как физиолого-генетические единицы эволюционного процесса, занимающие различные уровни в структуре биосферы. Изучение внутрипопуляционной изменчивости организмов раскрывает роль популяции в эволюции отдельных особей и в свою очередь отдельных особей в эволюции популяции как целого.

Значение естественной геохимической среды для развития организмов и эволюции жизни определяется использованием организмами многих химических элементов в процессах обмена веществ и биологически активных соединений, в состав которых входят эти элементы. Поэтому неоднородность геохимической среды является одной из важных причин изменчивости обмена веществ и синтеза биологически активных соединений в организмах.

Современными биогеохимией, геохимией, почвоведением с полной очевидностью доказана геохимическая неоднородность биосферы, значительная химическая изменчивость среды жизни в условиях литосферы, гидросферы и тропосферы. Организмы глубоко связаны с геохимической средой. Они поглощают из этой среды все доступные химические элементы, образующие растворимые соединения, или активно превращают нерастворимые соединения в доступные.

Очень важным свойством биосферы является единство геохимической среды и жизни, которое сложилось в процессе эволюции биосферы и выражается постоянной зависимостью жизни от геохимических условий среды и климата (водный режим, температура, инсоляция, конвекция). Степень накопления химических элементов организмами определяется не только геохимией среды и биологической природой организмов, но и биогеохимическими пищевыми цепями, состоящими из системы взаимозависимых звеньев, через которые осуществляется связь организмов и среды (почвообразующие породы, почвы, воды, воздух, микроорганизмы, растения, животные, человек).

Для выяснения сложных путей приспособления организмов к геохимической среде необходимо определить общие закономерности действия на организм различных концентраций химических элементов. Установлено, что как при недостатке, так и избытке в рационе кобальта, меди, цинка прирост веса животных уменьшается. Синтез многих биологически активных соединений в организме также зависит от содержания определенных микроэлементов в рационе или геохимической среде. Накопление витамина В 12 в печени животных (овцы, крупный рогатый скот, кролики и другие) значительно снижается при уменьшении количества кобальта в среде или рационе и незначительно высоком его содержании. Недостаток йода или его избыток приводят к компенсаторному увеличению размеров щитовидной железы и торможению синтеза в ней йодсодержащих соединений: йодтирозинов, иодтиронинов, тироксина и их производных. Важными регуляторами пуринового обмена являются молибден и медь. При относительном недостатке или избытке молибдена у человека и животных тормозится синтез или уменьшается активность фермента ксантиноксидазы, содержащего молибден, превращающего некоторые пуриновые основания в мочевую кислоту, а у животных при низком, как и при повышенном количестве меди снижается синтез уратоксидазы, окисляющей мочевую кислоту в аллантоин. Можно привести много подобных примеров. Во всех случаях наблюдается одна и та же закономерность: недостаток или избыток в среде или рационе тех или других химических элементов тормозит определенные биохимические процессы в организме. Следовательно, уровень синтеза ферментов и других биологически активных соединений в организме, обеспечивающий нормальное течение жизненных процессов, наблюдается только при определенных концентрациях и соотношениях в среде и организме микроэлементов (рисунок). Регулирующие системы организма (депонирования, выделительная, барьерная, синтеза биологически активных соединений и другие) не могут нормально функционировать при концентрации микроэлементов выше или ниже этих пределов.

В таких случаях происходит нарушение функций или срыв их, возникают дисфункции, аномалии развития и обмена веществ, что «может привести к появлению эндемических заболеваний у человека и животных.

Отдельные реакции на недостаток или избыток микроэлементов мы рассматриваем как часть целого. Для понимания этих явлений необходимо выяснить основные точки приложения химических элементов к биохимическим процессам и установить цепь процессов, вовлекающих целый организм в реакции на недостаток или избыток определенных элементов, т. е. объяснить значение части в реакции целого. Например, основная роль кобальта в организме состоит в микробном синтезе в пищеварительном тракте витамина В 12 , содержащего кобальт.

При недостатке кобальта может значительно ослабляться синтез витамина B 1 2 и его всасывание через слизистую оболочку кишечника. Ослабление процесса всасывания витамина B 12 обусловливается снижением секреции желудочного сока и недостатком мукопротеида, дающего с витамином В 12 соединение, для которого проницаема слизистая оболочка кишечника. Еще нет ясности в вопросе о значении для ьсасывания витамина B 12 образования его соединения с цинком. Вследствие недостатка в организме витамина В 12 уменьшается его депонирование печенью и другими органами. Это особенно ярко выражено у жвачных животных (овцы, крупный рогатый скот), у которых недостаток кобальта вызывает заболевание эндемическими гипо- и авитаминозом В 12 , но достаточно ясно проявляется н в других группах (кролики, свиньи). При недостатке в организме витамина В 12 развивается пернициозная анемия. Кроме того, при этом тормозится синтез коэнзима изомеразы, действующей на метилмалоновую кислоту, и нарушается метилирование тимина и метионина. Нарушение столь важных процессов в организме приводит к включению в патологический процесс все новых и новых звеньев обмена веществ. Недостаточность кобальта вызывает ослабление синтеза белков, нуклеиновых кислот (например, тимонуклеиновой кислоты), понижение активности многих ферментов (например, аргиназы), в том числе ферментов нуклеинового обмена (ДНК-азы), снижение основного обмена, потерю веса животных. Еще недостаточно изучено значение кобальта в процессах обмена веществ. Но несомненно, что недостаточность кобальта может повлечь за собой глубокие изменения целого организма.

При малой концентрации меди в окружающей среде и рационе у животных наблюдаются характерные изменения обмена веществ, вызываемые снижением активности окислительных ферментов, содержащих медь или железо. Это особенно четко проявляется в биогеохимических провинциях эндемической атаксии, в которых недостаток меди сочетается с избытком молибдена н сульфатов. При недостатке меди угнетение цитохромоксидазы у крыс сильнее выражено в печени, у свиней и цыплят - в сердце, у овец - в мозгу, а угнетенные сукцинатдегидрогеназы у овец - в белом веществе головного и спинного мозга; торможение активности НАД-цитохром-с-редуктазы установлено в митохондриях печени крыс, сульфидоксидазы - в печени овец, ДОФА-оксидазы - в печени и сером веществе головного и спинного мозга овец, моноаминоксидазы у свиней и овец - в сыворотке крови, у цыплят - в аорте; активность изоцитратдегидрогеназы митохондрий печени крысы при недостатке меди повышается, так как, по-видимому, медь легко угнетает этот фермент; при недостатке меди и повышенном содержании молибдена усиливается активность ферментов пуринового обмена - ксантиноксидазы и уратоксидазы у различных видов млекопитающих животных.

Приведенные данные о влиянии недостатка меди на активность многих ферментов различных органов и тканей показывают значение сравнительных физиологических исследований.

Изменение активности ферментов животного организма при недостатке меди влечет за собой нарушение многих биохимических процессов и физиологических состояний. Весьма вероятно, что важными токсическими агентами в организме при недостатке меди являются сульфиды, образующиеся в печени при распаде пистеина и в рубце жвачных в результате микробиологического восстановления сульфатов. При избытке в рационе сульфатов образуются сульфиды, при этом пищевая медь превращается в сернистую, не усваиваемую организмом, что усиливает дефицит меди. Обезвреживание большой части сульфидов происходит в печени путем их окисления в тиосульфат и сульфат. Окисление сульфидов в тиосульфат осуществляется сульфидоксидазой печени, активность которой угнетается при низком содержании меди в рационе и избытке молибдена. Очевидно, при недостаточности меди усиливается образование сульфидов в тканях, а избыток сульфидов еще более усиливает ее. Опыты с радиоактивной медью позволяют считать, что в биогеохимических провинциях при недостатке меди и избытке молибдена и сульфатов увеличивается потеря меди тканями, что также усиливает дефицит этого микроэлемента.

Недостаток меди, изменяя активность многих ферментов, вызывает значительные нарушения процессов обмена веществ, например, обмена липидов (снижение уровня сфингомиелина и ацетальфосфатидов в белом веществе головного и спинного мозга, нарушение миелинизации центральной нервной системы), хромо- протеидов (падение концентрации гемоглобина частично в связи с задержкой созревания эритроцитов и уменьшением продолжительности их жизни), синтеза эластина и коллагена (повреждение соединительной ткани, разрыв аорты и сердечных сосудов), пуринового обмена (возможно повышение активности ксантиноксидазы, образование мочевой кислоты, повышение активности уратоксидазы), угнетение окисления большинства субстратов цикла трикарбоновых кислот (цитрата, малата, а-кетоглутарата, пирувата и других).

Изучение основной роли металлов в обмене веществ животного организма - важный путь исследований влияния геохимической среды на животный организм. В биогеохимических провинциях с избытком молибдена действие этого металла связано с усилением синтеза ксантиноксидазы и повышением ее активности; в провинциях, обогащенных бором, частично ингибируются протеиназы и амилазы пищеварительного тракта; недостаток йода лимитирует синтез гормонов щитовидной железы; недостаток или избыток кобальта, а также марганца задерживают использование йода в синтезе трийодтиронинов и тироксина. Эти первичные воздействия металлов на процессы обмена веществ обусловливают вторичные дисфункции многих биохимических и физиологических процессов.

Оценка возможности нарушений обмена веществ или вообще появления биологических эффектов под влиянием геохимических факторов среды должна основываться на количественных параметрах. Поэтому важной задачей геохимической экологии является определение границ концентрации химических элементов в почвах, кормовых растениях, пищевых рационах, в пределах которых обеспечивается возможность нормального’ развития и жизни животных организмов, а также определение пороговых концентраций, при которых нарушается течение жизненных процессов.

Знание почвенных и пищевых пороговых концентраций химических элементов дает возможность представить географическую изменчивость обмена веществ в животном организме в зависимости от условий геохимической среды и может явиться основой биогеохимического районирования.

Биосферу, соответствующую территории СССР, мы разделили на регионы, названные биогеохимическими зонами. Они обусловливаются единством почвообразовательных процессов, климатических факторов, биогенной миграции химических элементов и характером биологических реакций организмов на геохимические и физические факторы среды.

Зональные регионы биосферы делятся на субрегионы - зональные биогеохимические провинции, в которых комбинируются признаки зон по концентрации и соотношению химических элементов, и азональные, признаки которых не соответствуют характеристике зон. Нами составлена схематическая карта биогеохимических зон и провинций СССР, где показаны районы характерных изменений обмена веществ и распространения ряда эндемических заболеваний человека и животных, а также районы обострения естественного отбора под влиянием недостатка или избытка микроэлементов. Синтез окислительных ферментов в животных организмах в условиях черноземной зоны выражен сильнее, чем в нечерноземной зоне; в провинциях эндемической атаксии в Дагестане, Узбекистане и в Актюбинском области наблюдается наиболее выраженное торможение синтеза окислительных ферментов; витамин Bi 2 депонируется в животном организме сильнее в черноземной зоне по сравнению с нечерноземной (особенно депонирование витамина В, 2 в печени и мышцах уменьшено в районах песчаных почв); синтез йодных соединений щитовидной железы ослаблен в нечерноземной зоне и горных зонах, а также пойме рек других зон; синтез ксантиноксидазы усилен в условиях молибденовых провинций Армении; уратоксидаза более активна у животных в провинциях с повышенным содержанием меди; в некоторых случаях наблюдается в различной степени выраженное ингибирование протеиназ и амилаз в борных провинциях сухостепной, полупустынной, пустынной биогеохими ческой зон.

Для анализа изменчивости обмена веществ животных необходимо учитывать не только изменчивость отдельных особей, но популяции в целом, состоящей из индивидуумов одного вида, необходимо выяснить структуру популяции, использовав физиологическую, биогеохимическую и морфологическую характеристики особей. При этом индивидуальную изменчивость следует рассматривать как составляющую популяционной изменчивости. Это позволит внутри популяции различать группы организмов с различной чувствительностью к экстремальным геохимическим факторам. Этим создается возможность наблюдать закономерности изменчивости популяций одного вида в различных условиях геохимической среды - при недостатке, избытке или нормальном содержании химических элементов в почвах, водах, растениях, кормах, пищевых рационах.

Изменчивость пороговой чувствительноти животных к геохимической среде (медь, молибден, бор, стронций, уран и другие) мы широко исследовали. Внутрипопуляционная физиологическая и биохимическая изменчивость организмов определяет степень обострения естественного отбора и степень адаптированности организма к экстремальным условиям. Можно предполагать, что в популяциях животных накапливаются значительные резервы потейциальной скрытой изменчивости, обусловленной, очевидно, малыми мутациями генов и их рекомбинациями. Такие резервы изменчивости обнаружены нами у почвенных микроорганизмов, живущих в условиях высокой концентрации определенных химических элементов (молибден, ванадий, бор, селен, кобальт). Внутрипопуляционная изменчивость микроорганизмов определялась в нашей лаборатории по физиологическому признаку - приспособляемости организмов отдельных штаммов, выделенных из одной колонии, к различным возможным естественным концентрациям химических элементов (от минимальных до максимальных). Например, штаммы Bacillus megaterium из почв, богатых ураном, хорошо растут при высоких концентрациях этого элемента и мало развиваются при низких его концентрациях. Наоборот, бактерии того же вида, выделенные из почв, бедных ураном, не могут развиваться при высоких его концентрациях. Это общее правило для различных видов микроорганизмов и химических элементов. Такие же закономерности роста бактерий и ряда актиномицетов в условиях борных провинций при сравнении их с такими же видами, взятыми из почв, бедных бором. Среди исследованных штаммов обнаружены мутантные, не подчиняющиеся общим правилам - выделенные из почв, богатых бором, но растущие хорошо при любых его концентрациях. Путем введения ДНК от мутантных форм и форм, адаптированных к высоким концентрациям бора, в культуры микроорганизмов, выделенных из почв, бедных бором, можно у них получить генетическую трансформацию приспособленности к бору - формы, хорошо растущие при высоких его концентрациях. Генетическая трансформация была осуществлена также у Bacillus megaterium , живущих при низких концентрациях селена, с помощью ДНК, выделенной из форм селеновой провинции. Из неприспособленных к селену были получены формы, хорошо развивающиеся при высоких концентрациях селена. При этом необходимо указать, что у этих бактерий из селеновых провинций обнаружен защитный фермент - селен-редуктаза, восстанавливающий селениты до элементарного неусвояемого селена. У форм этого же вида, выделенных из почв, бедных селеном, этот фермент не обнаружен. Генетическая трансформация приводит к появлению фермента у форм, не синтезировавших его ранее.

С помощью генетической трансформации показана наследственная природа приспособленности микроорганизмов к экстремальным условиям химической среды. Можно предполагать, что в биогеохимических провинциях, богатых или бедных определенными химическими элементами, возникают мутации, индуцированные экстремальными факторами. Происходит обогащение генофонда популяции, что создает условия для обострения естественного отбора и видообразования, преобразования генетической и экологической структур популяции при экстремальных изменениях условий геохимической среды.

Изменчивость микробных популяций и их генетическую природу можно изучать (при удачном выборе природных объектов) с помощью обычных микробиологических методов (экспериментальная геохимическая экология микроорганизмов), тогда как для проведения подобных исследований на растительных и животных организмах необходимы условия фито- и зоотронов, где можно регулировать химические и физические факторы среды. Геохимическая экология организмов должна не только наблюдать природные явления - влияние среды и сообществ на организмы, но должна развиваться как экспериментальная наука (экспериментальная геохимическая экология).

Мы рассмотрели некоторые вопросы геохимической экологии на уровне особей и популяций. Геохимическая же среда действует на организмы на всех уровнях строения биосферы, на уровне регионов биосферы (биогеохимические зоны) и субрегионов (биогеохимические провинции) биогеоценозов, популяций, отдельных особей.

Исследования в области геохимической экологии, установление причинных зависимостей невозможно без изучения органов и тканей (концентрирование химических элементов и влияние степени их накопления на промежуточный обмен веществ, активность и синтез биологически активных соединений, особенно ферментов). Такие исследования, как и проводимые на клеточном, субклеточном и молекулярном уровнях, являются основой понимания связи организмов с геохимической средой и адаптации организмов к геохимическим факторам среды. Примером исследования вопросов геохимической экологии на молекулярном уровне может служить анализ действия на организм различных концентраций и соотношений меди и молибдена. При высокой концентрации в пищевом рационе животных молибдена и низкой меди индуцируется молибденом синтез ксантиноксидазы, повышается ее активность и возрастает образование мочевой кислоты. При нарастании в организме содержания мочевой кислоты она индуцирует синтез уратоксидазы, фермента, вызывающего деградацию мочевой кислоты. Взаимоотношения между веществами, участвующими в рассматриваемых формах пуринового обмена, очень сложны. При увеличении в рационе количества меди и постепенном падении уровня молибдена происходят интересные адаптивные изменения ксантиноксидазы. При дефиците молибдена и повышенном содержании меди ее активность все же сохраняется. Нашими исследованиями показано, что ксантиноксидаза молока при этих условиях может обогащаться медью в 3,5-5,5 раза, теряя молибден. Синтез уратоксидазы в этих случаях индуцируется не только мочевой кислотой, но и медью, содержание которой повышено.

В этих экспериментах при действии на организм различных соотношений меди и молибдена может быть достигнут высокий оптимум активности ксантиноксидазы, не соответствующий физиологическому оптимуму, наблюдаемому при соотношении в рационе меди и молибдена 1:4.

Эта ранее неизвестная форма молекулярной адаптации процессов в организме крысы, очевидно, является фенотипическим проявлением генной функции фермента.

При экологических исследованиях, таким образом, можно подойти к анализу процесса эволюции организмов - изменчивости, приспособляемости, образования новых таксономических единиц, естественного отбора и их генетических основ. Для такого изучения вопросов эволюции открывает путь геохимическая экология организмов и их популяций в экстремальных условиях среды - при избыточном или недостаточном содержании микроэлементов в биосфере.

ИОННЫЙ И ГАЗОВЫЙ МЕТАБОЛОМ ЖИДКИХ СРЕД ОРГАНИЗМА

Организм человека в среднем на 60% массы тела состоит из воды. Вода заполняет все составные части клеток и внеклеточного пространства и представляет собой среду, в которой осуществляются биохимические реакции, перенос веществ и химической энергии. Биохимические реакции протекают в водной среде организма при постоянной температуре.

Вода является средой, в которой растворены, или диспергированы, различные вещества, входящие в состав организма. В воде содержатся основные макрокомпоненты организма - белки, углеводы, липиды, а также микроэлементы, нуклеиновые кислоты и другие микрокомпоненты.

Вода - основа циркулирующих в организме жидкостей, она также принимает участие в обменных процессах.

Очевидно, что знание свойств растворов необходимо для понимания биохимических превращений в организме человека.

Растворы имеют большое значение как в повседневной жизни, так и в медицине. По современным представлениям, жизнь возникла в океане, который являл собой водный раствор неорганических и органических веществ. В ходе эволюции живые организмы развивались и менялись. Многие из них покинули океан и перешли на сушу. Однако животные и растения, выйдя из морской колыбели, сохранили в своих организмах водные растворы, содержащие различные неорганические ионы и органические вещества. Растворами являются плазма крови, спинномозговая жидкость и лимфа. Лекарственные вещества эффективны лишь в растворенном состоянии или должны перейти в растворенное состояние в организме.

МЕТАБОЛИЗМ И МЕТАБОЛИЧЕСКИЕ ПУТИ

Метаболизм (от греч. metabole - «движение, изменение, превращение») - совокупность биохимических превращений веществ, поступающих в организм, и взаимопревращения веществ, из которых состоит организм.

Превращения (обмен) веществ в процессах метаболизма осуществляются через цепи последовательных реакций. Эти цепи последовательных реакций называют метаболическими путями (МП).

Характер метаболизма в тканях во многом определяется питанием.

У человека и других млекопитающих метаболическим превращениям подвергаются продукты, абсорбируемые после переваривания содержащихся в пище белков, жиров и углеводов.

У жвачных животных (и в меньшей степени у других травоядных) целлюлоза переваривается симбиотическими микроорганизмами с образованием низших гомологов органических кислот (уксусной, пропионовой, масляной); тканевый метаболизм у этих животных адаптирован к утилизации в качестве основного субстрата низших жирных кислот.

При экспериментальном исследовании метаболического пути, во-первых, индентифицируют реагирующие компоненты, выясняют стехиометрию и механизм для каждой из последовательных стадий процесса. Заключительным этапом такого исследования является воспроизведение ферментативных реакций в пробирке. Во-вторых, идентифицируют генетические, аллостерические и гормональные механизмы, с помощью которых осуществляется регуляция скорости данного метаболического процесса.

Метаболические пути в целом организме изучают либо методом определения вводимых в организм и выводимых из него веществ (в норме, а также в условиях стресса и патологии), либо методом перфузии (промывки) отдельных органов, либо методом переживающих срезов ткани. Очень перспективным считают метод, основанный на изучении полученных мутантных организмов с генетическими дефектами, а также метод меченых атомов.

Таблица 2.1. Взаимосвязь общего катаболизма (расщепления) и анаболизма (синтеза)

Метаболизм включает катаболизм и анаболизм.

Катаболизм - фаза распада, ферментативное расщепление сложных молекул на более простые, метаболический путь от сложного к простому.

Анаболизм - синтез сложных молекул из малых, метаболический путь от простого к сложному.

В свою очередь, каждый из этих процессов (катаболизм и анаболизм) состоит из двух одновременно протекающих взаимосвязанных процессов:

Промежуточного метаболизма - последовательности ферментативных реакций распада или синтеза, промежуточные продукты которой носят название «метаболиты»;

Энергетического сопряжения - превращений энергии в реакциях метаболизма, в результате которых энергия либо запасается в высокоэнергетичных соединениях (АТФ, NADPH), либо расходуется при распаде этих соединений (табл. 2.1).

Процессы общего катаболизма можно разбить на три основные стадии (рис. 2.1).

Рис. 2.1. Три основные стадии катаболизма

Первые две стадии катаболизма - расщепление белков, полисахаров и липидов до пирувата и ацетил-кофермента-А (ацетил-КоА). Третья стадия - цикл лимонной кислоты, основной процесс, обеспечивающий организм энергией и различными метаболитами.

Процессы анаболизма также включают три стадии. Исходными веществами, или строительными блоками, служат для анаболизма соединения, поставляемые процессами катаболизма.

Катаболические и анаболические пути не совпадают между собой.

Метаболизм пищевых веществ. Поступающая в организм пища, в значительной мере состоящая из белков, углеводов и жиров, должна быть деструктурирована до таких компонентов, как аминокислоты, гексозы, жирные кислоты, которые непосредственно участвуют в процессах метаболизма. Превращение исходных веществ в резорбируемые субстраты происходит поэтапно в результате процессов катаболизма, проходящих с участием различных ферментов.