Химические процессы и энергетика. Химия и энергетика. Современные источники энергии Химия и энергетика

В ядерных энергетических установках подводных лодок США используются многие химические элементы и синтетические органические соединения. Среди них - ядерное горючее в виде обогащенного делящимся изотопом урана; графит, тяжелая вода или бериллий, используемые как отражатели нейтронов для уменьшения их утечки из активной зоны реактора; бор, кадмий и гафний, входящие в состав стержней управления и защиты; свинец, применяемый в первичной защите реактора наряду с бетоном; цирконий в сплаве с оловом, служащий конструкционным материалом для оболочек тепловыделяющих элементов; катионитные и анионитные смолы, используемые для загрузки ионообменных фильтров, в которых первичный теплоноситель установки - вода высокой степени очистки освобождается от растворенных и взвешенных в ней частиц.

Важная роль отводится химии и в обеспечении работы различных систем подводных лодок, например системы гидравлики, имеющей прямое отношение к управлению энергетической установкой. Американские химики долго работали над созданием рабочих жидкостей для этой системы, способных действовать при высоком давлении (до 210 атмосфер), безопасных в пожарном отношении и неядовитых. Сообщалось, что для предохранения трубопроводов и арматуры системы гидравлики от коррозии при обводнении забортной водой в рабочую жидкость добавляется хромат натрия.

Разнообразные синтетические материалы - пенопласта, синтетический каучук, поливинилхлорид и другие широко используются на лодках для уменьшения шума механизмов и повышения их взрывостойкость Из таких материалов изготовляются звукоизолирующие покрытия и кожухи, амортизаторы, звукоизолирующие вставки в трубопроводы, звукозаглушающие подвески.

Химические аккумуляторы энергии, например в виде так называемых пороховых аккумуляторов давления, начинают применяться (правда, пока еще в экспериментальном порядке) для аварийного продувания цистерн главного балласта. Твердотопливные заряды используются на ракетных подводных лодках США и для обеспечения подводного старта ракет «Поларис». При сгорании подобного заряда в присутствии пресной воды в специальном генераторе образуется парогазовая смесь, которая выталкивает ракету из пусковой трубы.

Чисто химические источники энергии используются на некоторых типах состоящих на вооружении и разрабатываемых за рубежом торпед. Так, двигатель американской быстроходной парогазовой торпеды Мк16 работает на спирте, воде и перекиси водорода. Находящаяся в разработке торпеда Мк48, как сообщалось в печати, имеет газовую турбину, работа которой обеспечивается твердотопливным зарядом. Некоторые экспериментальные реактивные торпеды снабжены силовыми установками, работающими на реагирующем с водой топливе.

В последние годы нередко говорилось о новом типе «единого двигателя» для подводных лодок, основанного на новейших достижениях химии, в частности на использовании как источника энергии так называемых топливных элементов. Подробно о них говорится далее, в специальной главе этой книги. Пока лишь укажем, что в каждом из таких элементов протекает электрохимическая реакция, обратная электролизу. Так, при электролизе воды на электродах выделяются кислород и водород. В топливном же элементе к катоду подводится кислород, а к аноду - водород, и ток, снимаемый с электродов, идет во внешнюю для элемента сеть, где его можно использовать для привода гребных электродвигателей подводной лодки. Другими словами, в топливном элементе химическая энергия непосредственно преобразуется в электрическую без промежуточного получения высоких температур, как в обычной цепочке электростанции: котел - турбина - электрогенератор.

Материалом для электродов в топливных элементах могут служить никель, серебро и платина. В качестве топлива возможно применение жидкого аммиака, нефти, жидкого водорода, метилового спирта. В качестве окислителя обычно используется жидкий кислород. Электролитом может быть раствор едкого калия. В одном западногерманском проекте топливных элементов для подводной лодки предлагается использовать перекись водорода высокой концентрации, при разложении которой получаются одновременно и топливо (водород) и окислитель (кислород).

Энергетическая установка с топливными элементами в случае ее применения на лодках позволила бы отказаться от дизель-генераторов и аккумуляторных батарей. Она обеспечила бы также бесшумную работу главных двигателей, отсутствие вибрации и высокий коэффициент полезного действия - около 60–80 процентов при перспективном удельном весе установки до 35 килограммов на киловатт. По расчетам иностранных специалистов, расходы па постройку подводной лодки с топливными элементами могут быть вдвое-втрое ниже затрат на строительство атомной подводной лодки.

Печать сообщала, что в США велись работы по созданию наземного прототипа лодочной энергетической установки с топливными элементами. В 1964 году начались испытания такой установки на сверхмалой исследовательской подводной лодке «Стар-1», мощность гребного двигателя ее всего лишь 0,75 киловатт. По данным журнала «Шиф унд Хафен», опытная установка с топливными элементами создана также в Швеции.

Большинство зарубежных специалистов склоняется к тому, что мощность энергетических установок этого рода не превзойдет 100 киловатт, а время их непрерывной работы 1000 часов. Наиболее рациональным поэтому считается применять топливные элементы прежде всего на сверхмалых и малых подводных лодках исследовательского или диверсионно-разведывательного назначения с автономностью около одного месяца.

Создание топливных элементов не исчерпывает всех случаев применения достижений электрохимии в подводном деле. Так, на атомных подводных лодках США применяются щелочные никель-кадмиевые аккумуляторы, при зарядке которых выделяется не водород, а кислород. На некоторых дизельных подводных лодках этой страны вместо кислотных аккумуляторных батарей применяют щелочные серебряно-цинковые аккумуляторные батареи, обладающие втрое большей удельной энергией.

Еще более высоки характеристики серебряно-цинковых аккумуляторов одноразового действия для электроторпед подводных лодок. В сухом состоянии (без электролита) они могут храниться годами, не требуя никакого ухода. А приведение их в готовность занимает буквально доли секунды, причем аккумуляторы могут содержаться в снаряженном виде 24 часа. Габариты и вес подобных батарей в пять раз меньше, чем эквивалентных им свинцовых (кислотных). Некоторые типы торпед, которые состоят на вооружении американских подводных лодок, имеют батареи с пластинами из магния и-хлорида серебра, работающие на морской воде и также обладающие повышенными характеристиками.

Энергетика – основа развития цивилизации, производства, поэтому и в химической промышленности ей отведена ключевая роль. С помощью электричества работают силовые аппараты в индустрии, быту, сельском хозяйстве.

Оно используется в ряде промышленных объектов химической отрасли, принимает участие в определенных технологических процессах (электролиз). Во многом именно благодаря энергетике задается вектор развития научно-технического прогресса.

Считается, что электроэнергетика – один из сегментов «авангардной тройки». Что это значит? То, что этот комплекс ставится в один ряд с информатизацией и автоматизацией. Энергетика развивается во всех странах мира. При этом одни делают упор на строительство атомных электростанций, другие – ТЭС, а третьи вовсе полагают, что нетрадиционные источники электроэнергии придут на замену старым.

Роль энергетики в химическом секторе промышленности

В химической индустрии все процессы проводятся с выделением, затратой или превращением энергии из одного вида в другой. При этом электроэнергия затрачивается не только на проведение химических реакций, процессов, но и на транспортировку, измельчение, сжатие газообразных веществ. Поэтому все предприятия химического сегмента относятся к числу основных потребителей электроэнергии. В отрасли существует понятие энергоемкости. Им обозначается расход электричества на единицу получаемой продукции. Все предприятия имеют различную энергоемкость производственных процессов. При этом каждый завод использует свой вид энергии.

  1. Электрическая . Применяется во время проведения электрохимических и электромагнитных технологических процессов. Довольно широко используется электроэнергия для превращения ее в механическую: измельчение, дробление, синтез, нагревание. Электрическая энергия служит для работы вентиляторов, компрессоров, холодильных машин, насосного оснащения. Основными источниками электричества для индустрии считаются АЭС, ТЭС, ГЭС.
  2. Тепловая энергетика в химической промышленности . Тепловая энергия применяется для осуществления физической работы на производстве. С ее помощью можно проводить нагревание, сушку, плавление, испарение.
  3. Внутриядерная . Она выделяется в процессе синтеза ядер водорода в ядра гелия.
  4. Энергия химической природы . Применяется в гальванических элементах, аккумуляторах. В этих приборах она превращается в электрическую.
  5. Световая энергия . Сфера ее применения – фотохимические реакции, синтез хлористого водорода.

Одними из самых динамично развивающихся секторов энергетики считаются нефтяная и газовая индустрии. Добыча ресурсов занимает свою нишу в мировом производстве, ей отведена ключевая роль в развитии всей цивилизации. Нефть и газ – основа, без которой химическая промышленность не будет нормально функционировать.

Энергетике в химической промышленности уделяется много внимания. Без нее было бы невозможно осуществить большинство химических процессов в современной индустрии.

Чего стоит ожидать от проекта «Химия-2016»

На экспозиции в большом объеме будут представлены инновационные разработки, технологические процессы, методики химического сегмента. Одной из тем выставки станет энергетика и ее влияние на развитие химической промышленности.

На мероприятии ожидается большое количество участников со всего мира. При этом пришедшие на экспозицию смогут не только ознакомиться с продукцией ведущих производителей, но и заключить взаимовыгодные контракты, подписать соглашения о сотрудничестве, освежить взаимоотношения между уже существующими партнерами по бизнесу. Отечественные и зарубежные представители химической отрасли с радостью посещают мероприятие, ведь «Химия» – проект, который освещает все сегменты соответствующего производства.

Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.

Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.

Особенно много энергии потребляет химическая промышленность. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т.п. Значительных затрат энергии нуждаются в производстве карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т.п. Химические производства вместе с нефтехимическими являются энергоёмкими областями индустрии. Выпуская почти 7% промышленной продукции, они потребляют в пределах 13-20% энергии, которая используется всей промышленностью.

Источниками энергии чаще всего являются традиционные невосстановимые природные ресурсы - уголь, нефть, природный газ, торф, сланцы. В последнее время они очень быстро истощаются. Особенно ускоренными темпами уменьшаются запасы нефти и природного газа, а они ограничены и непоправимые. Неудивительно, что это порождает энергетическую проблему.

В течение 80 лет одни основные источники энергии сменялись другими: дерево заменили на уголь, уголь - на нефть, нефть - на газ, углеводородное топливо - на ядерное. К началу 80-х годов в мире около 70% потребности в энергии удволетворялось за счёт нефти и природного газа, 25% - каменного и бурого угля и лишь около 5% - других источников энергии.



В разных странах энергетическую проблему решают по-разному, тем не менее, всюду в её решение значительный вклад делает химия. Так, химики считают, что и в будущем (приблизительно еще лет 25-30) нефть сохранит свою позицию лидера. Но ее взнос в энергоресурсы заметно сократится и будет компенсироваться выросшим использованием угля, газа, водородной энергетики ядерного горючего, энергии Солнца, энергии земных глубин и других видов восстановительной энергии, включая биоэнергетику.

Уже сегодня химики беспокоятся о максимальном и комплексном энерготехнологическом использовании топливных ресурсов - уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т.п.

Источники основной электрической энергии

Тепловые электростанции

Работают на органическом топливе – мазут, уголь, торф, газ, сланцы. Размещаются ТЭС, главным образом, в том регионе, где присутствуют природные ресурсы и вблизи крупных нефтеперерабатывающих предприятий.

Гидроэлектростанции

Возводятся в местах, где большие реки перекрываются плотиной, и благодаря энергии падающей воды вращаются турбины электрогенератора. Получение электроэнергии таким методом считается самым экологичным за счет того, что не происходит сжигание различных видов топлива, следовательно, отсутствуют вредные отходы.

Гидроэлектростанция

Атомные электростанции

Для нагрева воды требуется энергия тепла, которая выделяется в результате ядерной реакции. А в остальном она схожа с тепловой электростанцией.

Атомная электростанция

Нетрадиционные источники энергии

К ним относятся ветер, солнце, тепло земных турбин и океанические приливы. В последнее время их все чаще используют как нетрадиционные дополнительные источники энергии. Ученые утверждают, что к 2050 году нетрадиционные энергоисточники станут основными, а обычные потеряют свое значение.

Энергия солнца

Есть несколько способов ее применения. Во время физического метода получения энергии солнца применяются гальванические батареи, способные поглощать и преобразовывать солнечную энергию в электрическую или тепловую. Также используется система зеркал, отражающая солнечные лучи и направляющая их в трубы, заполненные маслом, где концентрируется солнечное тепло.

В некоторых регионах целесообразнее использовать солнечные коллекторы, с помощью которых есть возможность в частичном решении экологической проблемы и использования энергии для бытовых нужд.

Основные достоинства энергии солнца – общедоступность и неисчерпаемость источников, полная безопасность для окружающей среды, основные экологически чистые источники энергии.

Главный недостаток – потребность в больших площадях земли для строительства солнечной электростанции.

Солнечная электростанция

Энергия ветра

Ветряные электростанции способны производить электрическую энергию только в том случае, когда дует сильный ветер. «Основные современные источники энергии» ветра – ветряк, представляющий собой достаточно сложную конструкцию. В нем запрограммированы два режима работы – слабый и сильный ветер, а также есть остановка двигателя, если очень сильный ветер.

Основной недостаток ветряных электростанций (ВЭС) - шум, получаемый во время вращения лопастей пропеллеров. Самыми целесообразными являются небольшие ветряки, предназначенные для обеспечения экологически безопасной и недорогой электроэнергией дачных участок или отдельных ферм.

Ветряная электростанция

Приливные электростанции

Для производства электрической энергии используется энергия прилива. Для того, чтобы построить простейшую приливную электростанцию потребуется бассейн, перекрытое плотиной устье реки или залив. Плотина оснащена гидротурбинами и водопропускными отверстиями.

Вода во время прилива поступает в бассейн и когда происходит сравнение уровней воды в бассейне и в море, водопропускные отверстия закрываются. С приближением отлива водный уровень уменьшается, напор становится достаточной силы, турбины и электрогенераторы начинают свою работу, постепенно вода из бассейна уходит.

Новые источники энергии в виде приливных электростанций имеют некоторые минусы – нарушение нормального обмена пресной и соленой воды; влияние на климат, так в результате их работы меняется энергетический потенциал вод, скорость и площадь перемещения.

Плюсы – экологичность, невысокая себестоимость производимой энергии, сокращение уровня добычи, сжигания и транспортировки органического топлива.

Нетрадиционные геотермальные источники энергии

Для производства энергии используется тепло земных турбин (глубинные горячие источники). Данное тепло можно применять в любом регионе, но расходы смогут окупиться лишь там, где горячие воды максимально приближены к земной коре – местности активной деятельности гейзеров и вулканов.

Основные источники энергии представлены двумя типами – подземный бассейн естественного теплоносителя (гидротермальный, паротермальный или пароводяной источники) и тепло горных горячих пород.

Первый тип представляет собой готовые к применению подземные котлы, из которых пар или воду добывать можно обычными буровыми скважинами. Второй тип дает возможность получения пара или перегретой воды, которые в дальнейшем можно использовать в энергетических целях.

Основной недостаток обоих типов – слабая концентрация геотермических аномалий, когда горячие породы или источники подходят близко к поверхности. Также требуется обратная закачка в подземный горизонт отработанной воды, поскольку термальная вода имеет множество солей токсичных металлов и химических соединений, которые нельзя сбрасывать в поверхностные водные системы.

Достоинства – данные запасы неисчерпаемы. Геотермальная энергия пользуется большой популярностью благодаря активной деятельности вулканов и гейзеров, территория которых занимает 1/10 площади Земли.

Геотермальная электростанция

Новые перспективные источники энергии – биомасса

Биомасса бывает первичной и вторичной. Для получения энергии можно использовать высушенные водоросли, отходы сельского хозяйства, древесину и т. д. Биологический вариант использования энергии – получение из навоза биогаза в результате сбраживания без доступа воздуха.

На сегодняшний день в мире накопилось приличное количество мусора, ухудшающего окружающую среду, мусор оказывает губительное влияние на людей, животных и на все живое. Именно поэтому требуется развитие энергетики, где будет использоваться вторичная биомасса для предотвращения загрязнения окружающей среды.

Согласно подсчетам ученых, населенные пункты могут полностью обеспечивать себя электроэнергией только за счет своего мусора. Более того, отходы практически отсутствуют. Следовательно, будет решаться проблема уничтожения мусора одновременно с обеспечением населения электроэнергией при минимальных расходах.

Преимущества – не повышается концентрация углекислого газа, решается проблема использования мусора, следовательно, улучшается экология.

Российская химическая промышленность по объему производства находится на одиннадцатом месте в мире. Доля отрасли в общем объеме промышленного производства страны составляет 6 %. На химических предприятиях сосредоточено 7 % основных фондов (пятое место после машиностроения, топливной промышленности, энергетики и металлургии), обеспечивающих 8 % стоимости промышленного экспорта и 7 % налоговых поступлений в бюджет. Предприятия химического комплекса являются поставщиками сырья, полупродуктов, различных материалов (пластмассы, химические волокна, шины, лаки и краски, красители, минеральные удобрения и т. д.) для всех отраслей и способны оказывать существенное воздействие на масштабы, направления и эффективность их развития.

Российский химпром сегодня

Преобразования с начала рыночных реформ существенно изменили структуру химического производства по формам собственности: к настоящему времени химический комплекс имеет самую немногочисленную группу предприятий, оставшихся в собственности государства. В результате приватизации контрольные пакеты акций значительной части химических предприятий перешли в руки внешних инвесторов. Это в основном нефтяные и газовые компании.

Как заявляют специалисты отрасли, российской химической промышленности необходим качественный скачок, иначе она станет абсолютно неконкурентоспособной. Среди основных факторов, тормозящих развитие отрасли, – стандартные для нашей промышленности проблемы. Во-первых, это изношенность фондов – установленное на российских предприятиях технологическое оборудование крайне отстало от современных требований (сроки эксплуатации значительной его части составляют 20 и более лет, степень износа основных фондов – около 46 %). Другие проблемы – это несоответствие структуры производства российского химического комплекса современным тенденциям химической промышленности развитых стран, а также тот факт, что основу производства российского химического комплекса составляет продукция с низкой степенью передела первичного сырья.

Если говорить о стратегических задачах отрасли, то это техническое перевооружение и модернизация действующих и создание новых экономически эффективных и экологически безопасных производств, развитие экспортного потенциала и внутреннего рынка химической продукции и развитие ресурсно-сырьевого и топливно-энергетического обеспечения химического комплекса. Среди других задач эксперты называют организационно-структурное развитие химического комплекса в направлении увеличения выпуска высокотехнологичной продукции, а также повышение эффективности НИОКР и инновационной активности предприятий российской химической промышленности.

Это тем более важно, так как в период 2020 и до 2030 г., согласно анализу, сделанному специалистами Министерства промышленности и торговли, перед российской химической промышленностью будут стоять задачи обеспечить запрос на новые высокотехнологичные материалы со стороны машиностроения, судостроения, медицины, вертолетостроения, авиастроения, энергетического машиностроения.

Для разработок в космическом, авиационном и ядерно-энергетическом секторах также потребуются новые химические материалы, композитные материалы, герметизирующие материалы, звукоизолирующие материалы, электрические провода и кабели, покрытия. Будут повышаться и без того высокие требования к техническим свойствам продуктов, таким, как высокая прочность, устойчивость к воздействию излучения, устойчивость к коррозии, к высокотемпературному и низкотемпературному воздействию, а также устойчивость к старению материалов.

Например, сейчас в мировой автомобильной промышленности полимеры занимают второе место после металлов как сырье для производства автокомпонентов. В России же наблюдается дефицит и ограниченный марочный ассортимент всех видов производимых пластиков, что создает серьезный барьер на пути увеличения номенклатуры производимых автокомпонентов.

Доля полимерных композитов в общем объеме стройматериалов в России также достаточно низка. Если в гражданском строительстве в основном применяются «традиционные» материалы, то в таких секторах, как строительство мостов, железных дорог, железнодорожных туннелей и др., у полимерных композитов в России есть значительные перспективы.

Таким образом, как говорят специалисты, налаживание производства необходимых полимеров в России может стать значительным сегментом импортозамещения. При этом применение продуктов химии в строительстве постоянно расширяется: это и новые утеплительные материалы и добавки в конструкционные материалы, и изоляционные материалы, и покрытия, производящие электричество из солнечного света, и дорожные покрытия, позволяющие измерить транспортный поток, и др.

На рынке также появляются новые химические продукты: пластики с долгим циклом жизни, материалы, способные к самодиагностике и самоадаптации, высокотехнологичные волокна нового поколения, самовосстанавливающаяся экорезина и «умные» наноматериалы, изменяющие форму по желанию пользователя. Специалисты говорят о полимерах с функцией активных мембран, способных сортировать молекулы, об аморфных полимерах, которые могут восстанавливать поврежденные покрытия, об очень важных в текущей политике России арктических видах топлива и т. д.

Многие специалисты также прогнозируют дальнейший рост значимости биологически полученных материалов. В среднесрочной перспективе ожидается массовое производство химических продуктов из возобновляемых ресурсов («белая» химия): биотоплива, продуктов из биодеградирующих полимеров, биосенсоров и биочипов. По предварительным оценкам экспертов, рынок биополимеров (полимеров, изготовленных на основе возобновляемых ресурсов) будет ежегодно расти на 8‑10 % и уже к 2020 г. их доля в общем рынке полимеров составит 25‑30 %.

Все это, по мнению чиновников из Минпромторга, может производиться и в России – в том случае, если в отечественную химическую промышленность пойдут необходимые инвестиции.

Энергетика и химия

Если говорить о связях химии и энергетики, то они теснейшие: химическая промышленность потребляет огромное количество энергии. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т. п. Значительных затрат энергии нуждаются производство карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т. п. Химические производства вместе с нефтехимическими являются энергоемкими областями индустрии. Выпуская почти 7 % промышленной продукции, они потребляют в пределах 13‑20 % энергии, которая используется всей промышленностью.

Однако и достижения химии работают на энергетику. Уже сегодня химики работают над вопросами максимального и комплексного энерготехнологического использования топливных ресурсов – уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т. п.

Например, во многих странах занимаются созданием рентабельной технологии переработки угля в жидкое (а также газообразное) топливо. Работают над этой проблемой и российские химики. Суть современного процесса переработки угля в синтез-газ заключается в следующем. В плазменный генератор подается смесь водяного пара и кислорода. Затем в раскаленный газовый факел поступает угольная пыль, и в результате химической реакции образуется смесь оксида углерода и водорода, т. е. синтез-газ. Из него получают метанол, который может заменить бензин в двигателях внутреннего сгорания и выгодно отличается от нефти, газа, угля в плане воздействия на экологию.

В России также разработаны химические методы изъятия вяжущей нефти (содержит высокомолекулярные углеводороды), значительная часть которой остается в шламовых амбарах. Для увеличения выхода нефти в воду, которую закачивают в пласты, прибавляют поверхностно-активные вещества, их молекулы размещаются на границе нефть-вода, которая увеличивает подвижность нефти.

Очень перспективной видится водородная энергетика, которая основывается на сжигании водорода, во время которого вредные выбросы не возникают. Тем не менее для ее развития нужно решить ряд задач, связанных со снижением себестоимости водорода, созданием надежных средств его хранения и транспортировки. Если эти задачи будут разрешимы, водород будет широко использоваться в авиации, водном и наземном транспорте, промышленном и сельскохозяйственном производствах. Над этими вопросами российские ученые тесно работают с европейскими коллегами.

Одним из ключевых направлений остается решение проблем, связанных с рентабельной переработкой «тяжелой» высоковязкой нефти, а также тяжелых остатков нефтеперерабатывающих производств. Глубина переработки нефти в странах ЕС составляет не менее 85 %, и в прогнозном периоде это значение будет увеличиваться. На предприятиях российского нефтеперерабатывающего комплекса требуемый набор вторичных процессов для переработки тяжелых фракций нефти в большинстве случаев отсутствует, и глубина переработки составляет порядка 70 %. Повышение данного показателя позволит получать дополнительную прибыль и повысить эффективность использования вторичного сырья.

Уже сегодня Институт нефтехимического синтеза РАН совместно с Грозненским нефтяным институтом (ГрозНИИ) создали принципиально новую технологию гидрогенизационной подготовки гудрона на наноразмерных катализаторах, после которой возможно применение обычных высокоэффективных процессов каталитического крекинга или гидрокрегинга вакуумного дистиллята, т. е. традиционных методов глубокой переработки нефти. При этом комплексность переработки нефти предполагает как рациональное извлечение из нефти ценных компонентов (масел, жидких и твердых парафинов, нефтеновых кислот и т. д.), так и оптимальную переработку ранее трудно утилизируемых продуктов, например легких газов, асфальтов, песков. Безотходность переработки нефти, ставшая особо острой в связи с возрастающим отрицательным воздействием человеческой деятельности на окружающую среду, предусматривает в том числе полную переработку всех фракций нефти с максимальным извлечением полезных компонентов: применение технологий, катализаторов и реагентов исключает образование вредных выбросов и отходов.

Кроме того, для России одним из наиболее интересных направлений остается газохимия, которая остро нуждается в простых и экономически эффективных технологиях конверсии природного газа в жидкие продукты, рассчитанных на эксплуатацию непосредственно в районах газодобычи, в т. ч. в приполярных областях и на морском шельфе.

С помощью химической промышленности Россия может значительно расширить свою долю на рынке не только первичных энергоресурсов, но и гораздо более прибыльном рынке дорогостоящих химических продуктов и экологически чистых моторных топлив. Именно в этой области Россия имеет наибольшие шансы уже в ближайшие годы выйти на рынок высоких технологий. Переход мирового рынка к ультранизкосернистым бензинам и дизтопливам, влияющим на оздоровление окружающей среды, – важное событие, вовлекающее огромное число звеньев хозяйственных и государственных механизмов. Этот переход сопровождается развитием технологий глубокой и сверхглубокой очистки жидких фракций, а также разработкой новых процессов очистки и переработки технологических и попутных нефтезаводских газов. Здесь российские химики также могли бы внести свою лепту.

Особенно тесно химическая промышленность России взаимодействует с энергетической отраслью в сфере ядерной энергетики. Причем речь идет не только о производстве тепловыделяющих элементов, но и о более экзотических проектах. Например, именно для АЭС в перспективе найдут еще одно применение – для производства водорода. Часть полученного водорода будут потребляться химической промышленностью, другая часть послужит для питания газотурбинных установок, включаемых при пиковых нагрузках.

Наноматериалы и биокатализ

К перспективным технологиям химической промышленности специалисты относят разработку новых технологий и средств утилизации радиоактивных отходов; молекулярный дизайн, химические аспекты энергетики, такие, как создание новых химических источников тока, разработка технологий получения топлив из ненефтяного и возобновляемого сырья, высокоэнергетические вещества и материалы и т. д.

В нанохимии к наиболее «продвинутым» направлениям относят нанокатализ, производство наноматериалов для приема, обработки и передачи информации, молекулярные носители памяти, разработку наномодуляторов.

Биокаталитические технологии предполагается использовать для производства биоразлагаемых и электропроводящих полимеров; высокомолекулярных полимеров для повышения нефтеотдачи пластов и водоочистки; антикоррозионных и антистатических покрытий металлоконструкций, превосходящих по эффективности лакокрасочные покрытия; биосенсоров и биочипов, использующих принципы высокоспецифического биологического восприятия и узнавания для использования в медицине, авиакосмической промышленности и производстве компьютерной техники. Можно также упомянуть новый метод разделения и очистки химических смесей, получение и нанесение порошковых покрытий, обессоливание воды, очистку воды и почвы, в том числе от тяжелых металлов и радионуклидов.

Как говорят специалисты, освоение нано- и биотехнологий приведет к появлению нового поколения продуктов с расширенными свойствами, что, в свою очередь, приведет к их новому применению во многих отраслях промышленности, в том числе энергетике. Это, например, новые материалы для хранения водорода, усовершенствованные мембраны для опреснительных и очистных сооружений, самовосстанавливающиеся покрытия и т. д.

Таким образом, в современных условиях энергетика все больше нуждается в новейших химических технологиях, и российские производители также отзываются на этот спрос.

– Расскажите о новинках вашего производства в части химической промышленности, применяемой в энергетике. Какая продукция наиболее востребована заказчиками?

Мария Зайцева, директор направления «Атомная энергетика» ООО «НПП «ВМП-Нева»: – Научно-производственный холдинг «ВМП» специализируется в области разработки, производства и внедрения покрытий для долговременной защиты металла и бетона.

Выпускаемые антикоррозионные и огнезащитные материалы, а также полимерные покрытия пола имеют высокие технологические и эксплуатационные характеристики, которые достигаются за счет высокоэффективных пигментов, химически и атмосферостойких полимеров, специальных наполнителей и вспомогательных добавок. В сфере энергетики мы работаем более 17 лет. Сегодня обращаем внимание специалистов отрасли на новый интересный материал, уже имеющий положительный опыт применения на АЭС. Эмаль ВИНИКОР® ЭП-1155Д разработана для защиты зоны контролируемого доступа в том числе реакторного блока. Это единственный материал в России, который прошел смоделированные испытания в условиях штатной работы реакторного блока. На сегодняшний день испытания подтверждают возможность работы покрытия без потери защитных параметров в течение 50 лет. Все это позволяет нам предлагать данный материал проектировщикам и эксплуатационным службам станций, заводам по переработке ядерных отходов и хранилищ, везде, где есть высокие требования «Росатома» к безопасности объектов. Другой материал для объектов энергетики и гидротехники – грунт-эмаль ИЗОЛЭП®-гидро. Применяется для защиты металлоконструкций, расположенных в подводной зоне и в зоне переменного смачивания. Успешно проходит натурные испытания в башенной градирне АЭС.

Вся история развития цивилизации - поиск источников энергии. Это весьма актуально и сегодня. Ведь энергия - это возможность дальнейшего развития индустрии, получение устойчивых урожаев, благоустройство городов и оказание помощи природе в залечивании ран, нанесённых ей цивилизацией. Поэтому решение энергетической проблемы требует глобальных усилий. Свой немалый вклад делает химия как связующее звено между современным естествознанием и современной техникой.

Обеспеченность энергией является важнейшим условием социально-экономического развития любой страны, ее промышленности, транспорта, сельского хозяйства, сфер культуры и быта.

Но в ближайшие десятилетие энергетики ещё не сбросят со счетов ни дерево, ни уголь, ни нефть, ни газ. И в то же время они должны усиленно разрабатывать новые способы производства энергии.

Химическая промышленность характеризуется тесными связями со всеми отраслями народного хозяйства благодаря широкому ассортименту производимой ею продукции. Эта область производства отличается высокой материалоемкостью. Материальные и энергетические затраты в производстве продукции могут составлять от 2/3 до 4/5 себестоимости конечного продукта.

Развитие химической технологии идет по пути комплексного использования сырья и энергии, применения непрерывных и безотходных процессов с учетом экологической безопасности окружающей среды, применения высоких давлений и температур, достижений автоматизации и кибернетизации.

Особенно много энергии потребляет химическая промышленность. Энергия тратится на осуществление эндотермических процессов, на транспортировку материалов, крошение и измельчение твердых веществ, фильтрование, сжатие газов и т.п.. Значительных затрат энергии нуждаются в производстве карбида кальция, фосфора, аммиака, полиэтилена, изопрена, стирола и т.п.. Химические производства вместе с нефтехимическими являются энергоёмкими областями индустрии. Выпуская почти 7 % промышленной продукции, они потребляют в пределах 13-20% энергии, которая используется всей промышленностью.

Источниками энергии чаще всего являются традиционные невосстановимые природные ресурсы - уголь, нефть, природный газ, торф, сланцы. В последнее время они очень быстро истощаются. Особенно ускоренными темпами уменьшаются запасы нефти и природного газа, а они ограничены и непоправимые. Неудивительно, что это порождает энергетическую проблему.

В течение 80 лет одни основные источники энергии сменялись другими: дерево заменили на уголь, уголь - на нефть, нефть - на газ, углеводородное топливо - на ядерное. К началу 80-х годов в мире около 70% потребности в энергии удовлетворялось за счёт нефти и природного газа, 25% - каменного и бурого угля и лишь около 5% - других источников энергии.

В разных странах энергетическую проблему решают по-разному, тем не менее, всюду в её решение значительный вклад делает химия. Так, химики считают, что и в будущем (приблизительно еще лет 25-30) нефть сохранит свою позицию лидера. Но ее взнос в энергоресурсы заметно сократится и будет компенсироваться выросшим использованием угля, газа, водородной энергетики ядерного горючего, энергии Солнца, энергии земных глубин и других видов восстановительной энергии, включая биоэнергетику.

Уже сегодня химики беспокоятся о максимальном и комплексном энерготехнологическом использовании топливных ресурсов - уменьшением потерь теплоты в окружающую среду, вторичным использованием теплоты, максимальным применением местных топливных ресурсов и т.п..

Поскольку среди видов горючего наиболее дефицитным является жидкое, во многих странах выделены крупные средства для создания рентабельной технологии переработки угля в жидкое (а также газообразное) топливо. В этой области сотрудничают учёные России и Германии. Суть современного процесса переработки угля в синтез-газ заключается в следующем. В плазменный генератор подаётся смесь водяного пара и кислорода, которая разогревается до 3000оС. А затем в раскалённый газовый факел поступает угольная пыль, и в результате химической реакции образуется смесь оксида углерода (II) и водорода, т.е. синтез-газ. Из него получают метанол: CO+2H2СH3OH. Метанол может заменить бензин в двигателях внутреннего сгорания. В плане решения экологической проблемы он выгодно отличается от нефти, газа, угля, но, к сожалению, теплота его скорания в 2 раза ниже, чем у бензина, и, кроме того, он агрессивен по отношению к некоторым металлам, пластическим массам.

Разработаны химические методы изъятия вяжущей нефти (содержит высокомолекулярные углеводороды), значительная часть которой остается в подземных амбарах. Для увеличения выхода нефти в воду, которую закачивают в пласты, прибавляют поверхностно-активные вещества, их молекулы размещаются на границе нефть-вода, которая увеличивает подвижность нефти.

Будущее пополнение топливных ресурсов объединяют с рациональной переработкой угля. Например, измельченный уголь смешивается с нефтью, на добытую пасту действуют водородом под давлением. При этом образовывается смесь углеводородов. На добывание 1 т искусственного бензина тратится около 1 т угля и 1500 м водорода. Пока что искусственный бензин дороже добытого из нефти, тем не менее, важна принципиальная возможность его добывания.

Очень перспективной видится водородная энергетика, которая основывается на сжигании водорода, во время которого вредные выбросы не возникают. Тем не менее, для ее развития нужно решить ряд задач, связанных со снижением себестоимости водорода, созданием надежных средств его хранения и транспортировки и т.п.. Если эти задачи будут разрешимы, водород будет широко использоваться в авиации, водном и наземном транспорте, промышленном и сельскохозяйственном производствах.

Неисчерпаемые возможности содержит ядерная энергетика, ее развитие для производства электроэнергии и теплоты дает возможность высвободить значительное количество органического топлива. Здесь перед химиками стоит задача создать комплексные технологические системы покрытия энергетических затрат, которые происходят во время осуществления эндотермических реакций, с помощью ядерной энергии. Сейчас ядерная энергетика развивается по пути широкого внедрения реакторов на быстрых нейтронах. В таких реакторах используется уран, обогащённый изотопом 235U (не менее чем на 20%), а замедлителя нейтронов не требуется.

В настоящее время ядерная энергетика и реакторостроение - это мощная индустрия с большим объёмом капиталовложений. Для многих стран она важная статья экспорта. Для реакторов и вспомогательного оборудования требуются особые материалы, в том числе высокой частоты. Задача химиков, металлургов и других специалистов - создание таких материалов. Над обогащением урана тоже работают химики и представители других смежных профессий.

Сейчас перед атомной энергетикой стоит задача вытеснить органическое топливо не только из сферы производства электроэнергии, но так же из теплоснабжения и в какой-то мере из металлургической и химической промышленности путём создания реакторов энерготехнологического значения.

АЭС в перспективе найдут ещё одно применение - для производства водорода. Часть полученного водорода будут потребляться химической промышленностью, другая часть послужит для питания газотурбинных установок, включаемых при пиковых нагрузках.

Большие надежды возлагаются на использование солнечной радиации (гелиоэнергетика). В Крыму действуют солнечные батареи, фотогальванические элементы которых превращают солнечный свет в электричество. Для опреснения воды и отопления жилья широко используются солнечные термоустановки, которые превращают солнечную энергию в теплоту. Солнечные батареи уже давно применяются в навигационных сооружениях и на космических кораблях. В отличие от ядерной, стоимость энергии, которую добывают с помощью солнечных батарей, постоянно снижается.

Для изготовления солнечных батарей главным полупроводниковым материалом является силиций и соединения силиция. Ныне химики работают над разработкой новых материалов-преобразователей энергии. Это могут быть разные системы солей как накопители энергии. Дальнейшие успехи гелиоэнергетики зависят от тех материалов, которые предложат химики для преобразования энергии.

В новом тысячелетии прирост производства электроэнергии будет происходить за счет развития солнечной энергетики, а также метанового брожения бытовых отходов и других нетрадиционных источников добывания энергии.

Наряду с гигантскими электростанциями существуют и автономные химические источники тока, преобразующие энергию химических реакций непосредственно в электрическую. В решении этого вопроса химии принадлежит главная роль. В 1780 г. итальянский врач Л. Гальвани, наблюдая сокращение отрезанной лапки лягушки после прикосновения к ней проволочками из разных металлов, решил, что в мышцах имеется электричество, и назвал его " животным электричеством". А. Вольта, продолжая опыт своего соотечественника, предположил, что источником электричества является не тело животного: электрический ток возникает от соприкосновения разных металлических проволочек. "Предком" современных гальванических элементов можно считать "электрический столб", созданный А. Вольтой в 1800 г. Это изобретение похоже на слоёный пирог из нескольких пар металлических пластин: одна пластина из цинка, вторая - из меди, уложенные друг на друга, а между ними помещена войлочная прокладка, пропитанная разбавленной серной кислотой. До изобретения в Германии В. Сименсом в 1867г. динамо-машины гальванические элементы были единственным источником электрического тока. В наши дни, когда автономные источники энергии понадобились авиации, подводному флоту, ракетной технике, электронике, внимание учёных снова обращено к ним.