Конечные стадии эволюции звезд главной последовательности. Время жизни звезд. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ С. А. Ламзин - "Звездная эволюция"

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,

Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газопылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд .

В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.

Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газопылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Согласно радиоастрономическим наблюдениям межзвездный газ, концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике.

Более того, из детальных «радиоизображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не можем .

Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны HII», т. е. облака ионизованного межзвездного газа (причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд - объектов заведомо молодых.

Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В самом деле, откуда, например, берется огромное количество энергии, необходимой для поддержания излучения Солнца примерно на наблюдаемом уровне в течение нескольких миллиардов лет? Ежесекундно Солнце излучает 4 * 1033 эрг, а за 3 млрд. лет оно излучило 4 * 1050 эрг. Несомненно, что возраст Солнца около 5 млрд. лет. Это следует хотя бы из современных оценок возраста Земли различными радиоактивными методами. Вряд ли Солнце «моложе» Земли .

В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеорных тел, другие искали источник в непрерывном сжатии Солнца.

Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях, перейти в излучение. Этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.

Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов Кельвинов).

В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно «просачивается» сквозь недра звезд и в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник.

Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратился в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце «израсходовало» не свыше 10% своего первоначального запаса водорода.

Теперь мы можем представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газопылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. звезда гравитационный энергия реакция

Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься.

Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.

При сжатии протозвезды температура ее повышается и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным.

Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана - Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой.

Поэтому такие звезды попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.

В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет. В этот период температура звездных недр уже оказывается достаточной для того, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение и газовый шар перестает сжиматься. Протозвезда становится звездой.

Чтобы пройти эту самую раннюю стадию своей эволюции, протозвездам нужно сравнительно немного времени. Если, например, масса протозвезды больше солнечной, нужно всего лишь несколько миллионов лет, если меньше - несколько сот миллионов лет. Так как время эволюции протозвезд сравнительно невелико, эту самую раннюю фазу развития звезды обнаружить трудно. Все же звезды в такой стадии, по-видимому, наблюдаются (например, очень интересные звезды типа T Тельца, обычно погруженные в темные туманности).

Мы можем теперь представить следующую картину: из облака межзвездной среды, путем его конденсации, образуется несколько сгустков разной массы, эволюционирующих в протозвезды. Скорость эволюции различна: для более массивных сгустков она будет больше (см. табл. 1).

Поэтому раньше всего превратится в горячую звезду наиболее массивной сгусток, между тем как остальные будут более или менее долго задерживаться на стадии протозвезды.

Излучение звезды поддерживается термоядерными реакциями, идущими в центральных областях.

Если масса велика, излучение звезды имеет огромную мощность и она довольно быстро расходует запасы своего водородного «горючего».

Ниже приводится табл. 1, дающая вычисленную продолжительность гравитационного сжатия и пребывания на главной последовательности для звезд разных спектральных классов. В этой же таблице приведены значения масс, радиусов и светимостей звезд в солнечных единицах .

Таблица 1

Спектральный класс

Светимость

Время, лет

гравитационного сжатия

пребывания на главной

последовательности

Из таблицы следует, что время пребывания на главной последовательности звезд, более «поздних», чем K0, значительно больше возраста Галактики, который по существующим оценкам близок к 15 - 20 млрд. лет.

«Выгорание» водорода (т. е. превращение его в гелий при термоядерных реакциях) происходит только в центральных областях звезды. Это объясняется тем, что звездное вещество перемешивается лишь в центральных областях звезды, где идут ядерные реакции, в то время как наружные слои сохраняют относительное содержание водорода неизменным.

Так как количество водорода в центральных областях звезды ограниченно, рано или поздно (в зависимости от массы звезды) он там практически весь «выгорит». Расчеты показывают, что масса и радиус центральной ее области, в которой идут ядерные реакции, постепенно уменьшаются, при этом звезда медленно перемещается. Этот процесс происходит значительно быстрее у сравнительно массивных звезд .

Что же произойдет со звездой, когда весь (или почти весь) водород в ее ядре «выгорит»? Так как выделение энергии в центральных областях звезды прекращается, температура и давление не могут поддерживаться на уровне, необходимом для противодействия силе тяготения, сжимающей звезду. Ядро звезды начнет сжиматься, а температура его будет повышаться. Образуется очень плотная горячая область, состоящая из гелия (в который превратился водород) с небольшой примесью более тяжелых элементов. Газ в таком состоянии носит название «вырожденного».

В этой плотной горячей области ядерные реакции происходить не будут, но они будут довольно интенсивно протекать на периферии ядра, в сравнительно тонком слое. Вычисления показывают, что светимость звезды и ее размеры начнут расти. Звезда как бы «разбухает», и начнет «сходить» с главной последовательности, переходя в области красных гигантов. Далее, оказывается, что звезды-гиганты с меньшим содержанием тяжелых элементов будут иметь при одинаковых размерах более высокую светимость.

При переходе звезды в стадию красного гиганта скорость ее эволюции значительно увеличивается. Скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы - Галактики - прошло около 15-20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта «критическая» масса всего лишь на 10-12% превышает массу Солнца.

С другой стороны, процесс образования звезд из межзвездной газопылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому, мы наблюдаем горячие массивные звезды в верхней левой части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности .

Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с «современной». Вот уже по крайней мере 4,5 млрд. лет оно «сидит» на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус - в десятки.

Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.

Звезда -- небесное тело, в котором идут, шли или будут идти термоядерные реакции. Звезды представляют собой массивные светящиеся газовые (плазменные) шары. Образующиеся из газово-пылевой среды (водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности -- тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Звезды - это огромные объекты, шаровидной формы, состоящие из гелия и водорода, а также других газов. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом. Как все органическое в нашей вселенной, звезды возникают, развиваются, изменяются и исчезают - этот процесс занимает миллиарды лет и называется процессом «Эволюции звезд».

1. Эволюция звезд

Эволюция звезд -- последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. Звезда начинает свою жизнь как холодное разряжённое облако межзвёздного газа (разряженная газовая среда, заполняющая всё пространство между звёздами), сжимающееся под действием собственного тяготения и постепенно принимающее форму шара. При сжатии энергия гравитации (универсальное фундаментальное взаимодействие между всеми материальными телами) переходит в тепло, и температура объекта возрастает. Когда температура в центре достигает 15-20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной -- в ней доминируют реакции водородного цикла. В таком состоянии он пребывает большую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга -- Расселла (рис. 1) (показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды, 1910 год), пока не закончатся запасы топлива в его ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на его периферии. В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается -- звезда становится красным гигантом, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий -- в углерод, углерод -- в кислород, кислород -- в кремний, и наконец -- кремний в железо).

2. Термоядерный синтез в недрах звезд

К 1939 году было установлено, что источником звёздной энергии является термоядерный синтез, происходящий в недрах звёзд. Большинство звёзд излучаются потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным, или p-p-циклом, и углеродно-азотным, или CN-циклом. В маломассивных звёздах энерговыделение в основном обеспечивается первым циклом, в тяжёлых -- вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции. Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см?. Молекулярное облако имеет плотность около миллиона молекул на см?. Масса такого облака превышает массу Солнца в 100 000--10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно вращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нем могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому -- столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождением облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут инициировать процесс образования звезды. Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием сил гравитационного притяжения собираться вокруг центра будущей звезды. Половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина -- на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В итоге градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро, массой порядка 1 % от массы облака. Этот момент невидим. Дальнейшая эволюция протозвезды - это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счет этого растет в размерах. Масса свободно перемещающегося в облаке вещества исчерпывается, и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды. Процесс формирования звёзд можно описать единым образом, но последующие стадии развития звезды почти полностью зависят от её массы, и лишь в самом конце звёздной эволюции свою роль может сыграть химический состав.

ЭВОЛЮЦИЯ ЗВЁЗД - изменение со временем физ. параметров и наблюдаемых характеристик звёзд в результате. протекания ядерных реакций, излучения энергии и потери массы. Для звёзд в тесных двойных системах существ, роль играет обмен веществом между компаньонами. Об эволюции таких звёзд см. в ст. Тесные двойные звёзды .

Осн. наблюдаемыми характеристиками звезды являются её светимость L (при известном расстоянии) и темп-ра Г, поверхности звезды, определяемая по распределению энергии в спектре. Приближённо Т s равна эффективной температуре T э . Э. з. представляется в виде линии (трека) на плоскости lg L , lg T э (т. е. на Герцшпрунга - Pесселлa диаграмме , ГРД).

Введение

Звёзды рождаются из плотных межзвёздных облаков, в к-рых развиваются тепловые и гидродинамич. неустойчивости (см. Звездообразование) . Следствием этих неустой-чивостей является гидродинамич. коллапс части облака, заканчивающийся образованием гравитационно связанного объекта - протозвезды. Коллапс происходит неоднородно. Быстрое сжатие центр, части приводит к образованию гидростатически равновесного ядра массой (для полной массы коллапсирующего облака масса Солнца), а затем следует длительная стадия аккреции на него оставшейся части облака (оболочки). Время образования протозвезды от начала коллапса составляет 10 -10 6 лет. Протозвезды светят за счёт выделения гра-витац. энергии при сжатии. Нек-рый вклад в светимость дают также ядерные реакции с участием
, малые кол-ва к-рых образовались на оолее ранних этапах эволюции Вселенной (см. Нуклеосинтез ).По мере увеличения массы и сжатия темп-pa центр. областей ядра протозвезды растёт. Когда она достигает значений ~ 10 7 К (что возможно для звёзд с массой, превышающей начинается горение водорода (термоядерные реакции превращения водорода в гелий). Потери энергии на излучение компенсируются энергией, выделяющейся при горении водорода. Звезда выходит на гл. последовательность (ГП) ГРД. Подробнее о нач. этапе Э. з. см. в ст. Протозвезды .
Образование звёзд сопровождается истечением вещества оболочки, так что масса звезды на ГП меньше нач. массы коллапсирующего облака. Наблюдения показывают, что на стадии протозвезды скорость потери массы у звёзд ссоставляет(звёзды типа T Тельца). За время прихода на ГП (от 6*10 6 лет для до 2·10 7 лет длямасса звезды уменьшится наСветимость звёзд быстро растёт с увеличением их массы (см. Масса - светимость зависимость) . У звёзд с светимость на стадии аккреции оказывается столь большой, что вызывает мощное истечение вещества, и масса рождающейся звезды M оказывается значительно меньше нач. массы M 0 коллапсирующего облака:для

Звезда, излучающая за счёт выделения ядерной энергии, медленно эволюционирует по мере изменения её хим. состава. Наиб. время звезда проводит на стадии, когда в её центр. области горит водород. Эта стадия наз. ГП на ГРД. Б. ч. наблюдаемых звёзд расположена вблизи ГП. Большая длительность этой стадии связана, во-первых, с тем, что водород является самым калорийным ядерным топливом. При образовании одного ядра гелия (альфа-частицы) из 4 ядер водорода выделяетсяа при образовании углерода 12 C из 3 альфа-частиц выделяется всего , т. е. выделение энергии на единицу массы в 10 раз меньше. Во-вторых, звёзды на ГП значительно меньше излучают, чем на последующих стадиях эволюции, и в итоге оказывается, что время жизни на ГП на два - три порядка больше, чем время всей последующей эволюции. Соответственно кол-во звёзд на ГП существенно превышает число более ярких звёзд.

После выгорания водорода в центре звезды и образования гелиевого ядра выделение ядерной энергии в нём прекращается и ядро начинает интенсивно сжиматься. Водород продолжает гореть в тонкой оболочке, окружающей гелиевое ядро (т. н. слоевой источник). Оболочка при этом расширяется, светимость звезды растёт, поверхностная темп-pa уменьшается, и звезда становится красным гигантом (в случае менее массивных звёзд) или сверхгигантом (красным или жёлтым) в случае более массивных звёзд (см. Красные гиганты и сверхгиганты) . Процесс последующей эволюции определяется в основном массой звезды M .

В звёздах сядерное горение заканчивается после образования углеродного (12 C) с примесью кислорода звёздного ядра массой ок. 1. После сброса всей оболочки, окружающей это ядро, оно превращается в "мёртвую" звезду - белый карлик .
Массивные звёздыпроходят эволюц. путь горения вплоть до образования звёздного ядра из самого стабильного (макс. энергия связи на нуклон) элемента 56 Fe. В таком ядре выделение ядерной энергии невозможно, рост давления не компенсирует рост сил тяготения при росте плотности и медленное квазистатич. сжатие сменяется быстрым коллапсом - происходит потеря гидродинамич. устойчивости и взрыв сверхновой звезды . При быстром сжатии до плотности r, близкой к плотности вещества в атомном ядре, выделяется огромное кол-во гравитац. энергии -в раз больше, чем за всё время ядерной эволюции, длящейся десятки млн. лет. Подавляющая часть этой энергии уносится нейтрино. После взрыва и сброса оболочки образуется остаток в виде нейтронной звезды - второй тип "мёртвых" звёзд.
В звёздах промежуточной массыобразуется вырожденное углеродно-кислородное ядро, масса к-рого столь велика, что оно уже не может существовать в виде белого карлика, а продолжает сжиматься до тех пор, пока рост темп-ры и плотности не приведёт к быстрому (взрывному) сгоранию углерода (углеродная вспышка) и полному разлёту всей звезды. Этот разлёт также наблюдается как взрыв сверхновой, на месте к-рого не остаётся никакого остатка.

Наконец для самых массивных звёзд коллапс может не остановиться на стадии нейтронной звезды, а продолжиться дальше, образуя релятивистский объект - чёрную дыру . Наблюдат. проявления процесса образования чёрной дыры пока не известны. Возможно, рост светимости здесь столь незначителен, что такой коллапс трудно обнаружить ("беззвучный" коллапс). Однако даже в этом случае коллапс должен сопровождаться мощным всплеском нейтринного излучения, почти как при образовании нейтронной звезды, и, кроме того, исчезнет (погаснет) звезда, существовавшая до начала коллапса.

На протяжении практически всей эволюции звезда устойчива относительно разл. типов возмущений. Наиб. важны два типа возмущений: гидродинамические и тепловые. Гидродинамич. возмущения связаны со случайными возмущениями плотности и размера звезды. Устойчивость относительно таких возмущений обеспечивается тем, что при сжатии (расширении) силы давления P растут (падают) быстрее сил тяготения. Это приводит к тому, что при случайном сжатии или расширении возникает сила, возвращающая звезду к её равновесному состоянию. Изменение давления при быстрых процессах происходит почти адиабатически, поэтому устойчивость определяется показателем адиабаты к-рый должен быть больше 4/3 (S - уд. энтропия; см. в ст. Гравитационный коллапс) . T. к. давление вещества в звезде определяется смесью идеального газа с излучением,и, как правило, звёзды гидродинамически устойчивы. Примером неустойчивой звезды может служить предсверхновая с железным ядром, в к-ром рост давления при сжатии недостаточен. Значит, часть энергии тратится на фоторасщепление железа с образованием нейтронов, протонов и альфа-частиц, а g существенно уменьшается и может приближаться к единице.

Устойчивость относительно тепловых возмущений обеспечивается отрицательной теплоёмкостью звезды. Отрицат. теплоёмкость можно объяснить на основе теоремы вириала. В применении к звёздам, к-рые описываются ур-нием состояния идеального газа с показателем адиабаты 5/3, эта теорема гласит, что в равновесии тепловая энергия звезды составляет половину абс. величины её гравитац. энергии (отрицательной), т. е. полная энергия звезды отрицательна и равна половине гравитационной.

Любое случайное выделение энергии увеличивает полную энергию звезды, т. е. уменьшает её абс. величину. Поэтому в новом положении равновесия звезда должна расшириться, чтобы уменьшить по абс. величине значение гравитац. энергии. В соответствии с этим значение тепловой энергии звезды (а значит, и темп-ры) в новом состоянии уменьшится, т. к. она составляет половину абс. величины гравитац. энергии. T. о., выделение энергии приводит к уменьшению темп-ры, что и наз. отрицат. теплоёмкостью. При отрицат. теплоёмкости случайное выделение тепла уменьшит темп-ру, а значит, и уменьшит выделение тепла в ядерных реакциях, скорость к-рых быстро падает с уменьшением темп-ры. Наоборот, случайная потеря энергии будет скомпенсирована сжатием и ростом скорости тепловыделения.

На нек-рых критич. стадиях теплоёмкость звезды становится положительной. Тогда развивается тепловая неустойчивость и происходит тепловая вспышка. Наиб, очевиден механизм развития тепловой неустойчивости при наличии вырожденного ядра, где давление и внутр. энергия вещества практически не зависят от темп-ры. В этом случае тепловыделение приводит к росту темп-ры, к-рый не влияет на рост давления и потому не сопровождается расширением. T. к. скорость ядерных реакций быстро растёт с ростом темп-ры, происходят самоускоряющееся выделение ядерной энергии и тепловая вспышка (ядерный взрыв).

Процессы, определяющие Э. з., протекают с разными характерными временами, из к-рых отметим гидродинамическоетепловоеи ядерное Гидродинамич. время характеризует скорость изменения параметров звезды при движениях вещества со скоростями, сравнимыми со скоростью звука u зв . По порядку величиныгде R - характерный размер звезды. Для равновесной звезды Гидродинамич. время порядка времени свободного падения:
Тепловое время определяет скорость охлаждения или нагрева звезды. При охлаждении в отсутствие ядерного горения поскольку запас энергии порядка гравитац. энергии звезды; в этом случае t th часто наз. временем Кельвина - Гельмгольца. В случае быстрого ядерного горения в отсутствие Гидродинамич. движений, когдавремя нагревагде-скорость энерговыделения, а С v -теплоёмкость при пост, объёме.

Ядерное времяопределяет скорость изменения хим. состава (концентраций элементов) при ядерном горении. Обычно используют концентрацию (содержание) по массе X i - долю массы единицы объёма, приходящуюся на данный элемент i . Ядерное время очень резко (экспоненциально) зависит от темп-ры. В нормальных звёздах, где поддерживается гидростатич. равновесие, это время, как правило, много больше др. характерных времён. При быстром ядерном горении t n связано с тепловым временем:


где q -калорийность ядерного топлива (энергия, выделяющаяся при сгорании единицы массы топлива
На протяжении почти всей Э. з.- начиная от стадии молодой сжимающейся звезды до поздних стадий - время является минимальным. из всех характерных времён. Только в предсверхновых, где имеет место ядерное равновесие (равновесие относительно реакций сильного взаимодействия), времяявляется наименьшим. Обычно в звезде сохраняется приблизит, равновесие относительно быстрых процессов (напр., гидростатич. равновесие), а время эволюции определяется одним из медленных процессов.

На стадии гравитац. сжатия выполняется неравенство Звезда находится в гидростатич. равновесии, эволюция определяется потерей энергии (с характерным временема осн. ядерные реакции практически не протекают.

На ГП это неравенство сохраняется, но эволюция определяется ядерными реакциямии имеет место гидроста-тич. и тепловое равновесие.
После образования гелиевого ядра, сжатия центральных областей и расширения оболочки скорость ядерных реакций в центре звезды возрастает настолько, что t n становится порядкаПри этом осн. отклонения от теплового равновесия происходят в массивной оболочке вокруг гелиевого ядра. Гидродинамич. время остаётся минимальным, и гидростатич. равновесие звезды не нарушается.

При вспышке в углеродно-кислородном ядре, приводящей к полному разлёту звезды, кактак иоказываются много меньше t h , что и приводит к нарушению гидростатич. равновесия и взрыву.

В ядрах массивных предсверхновых, где имеет место ядерное равновесие, значениеминимально и Э. з. определяется скоростью потери энергиикак в молодых сжимающихся звёздах. Она заканчивается потерей гидро-динамич. устойчивости и быстрым коллапсом. Гидродинамич. неустойчивость связана не с изменениема с изменением структуры равновесного состояния звезды. Развитие тепловой неустойчивости связано с быстрым уменьшениеми заканчивается взрывом, когда эти времена становятся меньше

Итак, если исключить неск. критич. моментов, звёзды в своей массе глобально устойчивы относительно механич. и тепловых возмущений. Разнообразие свойств вещества звёзд, в частности наличие зон перем. ионизации, тонких слоев горения, протяжённых оболочек, приводит к развитию локальных неустойчивостей, к-рые не ведут к разрушению звезды, т. к. обычно стабилизируются нелинейными эффектами при достижении конечных амплитуд возмущений. Существование нек-рых типов переменных звёзд связано с развитием подобных локальных неустойчивостей.

Осн. фактором, определяющим распределение темп-ры в звезде, является скорость потери энергии (светимость), зависящая от непрозрачности звёздных недр. Скорость Э. з. без источников энергии определяется запасами тепловой и гравитац. энергии и скоростью остывания, а "включение" ядерных реакций эквивалентно увеличению запасов тепловой энергии и уменьшению скорости эволюции. Фак-тич. светимость звезды определяется её структурой и не зависит от скорости протекания ядерных реакций. Рассмотрим, напр., переход от стадии гравитац. сжатия к стадии ГП звезды с Если бы звезда излучала только за счёт запаса гравитац. энергии, то характерное время её жизни (время Э. з.) составляло былет. По мере излучения энергии и сжатия темп-pa в центре звезды растёт и ядерное тепловыделение увеличивается до тех пор, пока не уравновесит потери на излучение (светимость). Начиная с этого момента гравитац. сжатие прекращается и звезда "застывает" на ГП, пока не выгорит водород и не образуется гелиевое ядро. Для такой звезды за счёт горения водорода время жизни увеличивается почти на три порядка, достигая ~ 10 10 лет. Аналогично горение очередного ядерного горючего "замораживает" звезду в нек-ром др. состоянии. Точку (на ГРД). в к-рой происходит "замораживание" звезды, определяет зависимость скорости ядерных реакций данного горючего от темп-ры. Чем больше заряд ядра горючего, тем большая темп-ра требуется для обеспечения данной скорости тепловыделения (из-за роста высоты кулоновского барьера ядра горючего). Однако при росте темп-ры и плотности светимость звезды, являющаяся ф-цией состояния, также возрастает. Поэтому по мере эволюции и образования всё более тяжёлых элементов в центр. ядре светимость растёт почти монотонно.

При высокой темп-ре всё большую роль в охлаждении звезды играют нейтринные потери. На поздних стадиях нейтринные потери на несколько порядков превышают потери на излучение фотонов и соответственно ускоряют Э. з.

Уравнения эволюции звёзд

Обычно (для упрощения расчётов) звезда считается невращающейся и сферически-симметричной. В процессе эволюции осн. масса звезды находится в состоянии гидростатич. равновесия, определяемого ур-нием

где-масса, содержащаяся внутри радиуса r ,

Плотность,-давление, определяемое ур-нием состояния

Здесь первый член - давление газа, второй - излучения, - газовая постоянная, а - постоянная плотности излучения.Для звёзд массойна ГП играют роль поправки к ур-нию состояния, связанные с неидеальностью вещества. Распределение темп-ры определяется ур-нием энергии

(E -внутр. энергия единицы массы,-скорость потери энергии единицей массы вещества за счёт нейтринного излучения), ур-ниями переноса тепла

В зоне лучистого равновесия (к - непрозрачность),

в конвективной зоне и

в конвективном ядре с пост. энтропией S . Конвективный поток энергии F c в оболочке рассчитывается по приближённой теории пути перемешивания (см. Конвективная неустойчивость) .

Ур-ния равновесия решаются для граничных условий в центре (r = 0, L = 0 при т = 0) и на уровне фотосферы , где оптическая толщина


при m = M . Последнее условие усложняется для звёзд на стадии красных сверхгигантов и гигантов, когда звезда имеет протяжённую оболочку небольшой плотности и большую светимость.

В процессе ядерного горения происходят медленное изменение хим. состава звезды и, как следствие, изменения всех её параметров. Осн. ур-ниями, описывающими эволюцию хим. состава, являются:


Здесь: т p , m a , и m 12C - массы протона, a-частицы и углеродаи-содержания (по массе) водорода, гелия и-скорость энерговыделения и энерге-тич. выход для соответствующих цепочек ядерных реакций (см. ниже). При расчётах поздних стадий эволюции массивных звёзд учитывают горение более тяжёлых элементов. У звёзд с массой меньше и центр, темп-рой

Т с меньше ~ 1,5-10 7 К осн. источником ядерной энергии являются реакции водородного цикла (рр-цикл). При больших массах и центр, темп-pax звёзд водород горит преим. в углеродно-азотном цикле (CNO-цикл). Cp. кол-во энергии, выделяющееся при синтезе одного ядра 4 He (за вычетом энергии, уносимой нейтрино): в рр-цикле 26,2 МэВ, а в CNO-цикле МэВ. Соответствующие скорости энерговыделения:

(T 9 - темп-pa в млрд. К, r в г/см 3). Появление конвективного ядра у звёзд сна ГП связано с переходом от рр- к CNO-циклу, обладающему более резкой зависимостью скорости горения от темп-ры. Горение гелия протекает в т. н. За-реакции - реакции слияния трёх ядер Не:

Зa-реакция сопровождается реакцией к-рой соответствует

Выделение тепла при образовании одного ядра 12 C и 16 O соответственно равно
Построение модели звезды (см. также Моделирование звёзд )в момент требует знания её состояния на предыдущем временном шаге численной модели t n-1 для нахождения скорости выделения гравитац. энергии

и определения хим. состава

где-правые части ур-ний (7),Наряду с явной схемой шага по времени, приведённой выше, используют неявную, когда F i , Р/ r 2 вычисляются в момент t n или представляют собой линейную комбинацию значений, взятых в моменты Решение системы обыкновенных дифференц. ур-ний (1) - (6) осложняется наличием особых точек в центре звезды и приПоэтому интегрирование ведётся навстречу из центра и с поверхности со сшивкой в к--л. промежуточной точке [метод Шварцшильда (M. Schwarzschild) ]. Из условий сшивки находят центр, значения r с, T с, а также L и T э . Др. способ решения состоит в разбиении звезды на N сферич. слоев и замене дифференц. ур-ний разностными [метод Хеньи (L. Непуеу)]. Последний метод лучше приспособлен для использования ЭВМ. Для построения гидростатич. моделей применяют также метод, основанный на решении гидродинамич. нестационарных ур-ний с вязкостью.

Ядерная эволюция звёзд

Расчёты Э. з. представляются в виде треков на ГРД. Как уже отмечалось, б. ч. времени жизни звёзды проводят на ГП.
Время жизни такой звезды на ГП (точка А на рис. 1) ок. 10 10 лет, а её строение аналогично строению Солнца . На протяжении этой стадии в центр, областях звезды водород "перегорает" в гелий. Когда масса гелиевого ядра достигает ~ 10% массы звезды, становится заметным отход от ГП (точка В) . Небольшое увеличение светимости на участке AB связано с уменьшением непрозрачности из-за уменьшения числа электронов при синтезе гелия из водорода. После выгорания водорода в центре звезды и образования гелиевого ядра отвод энергии из него может компенсироваться только энергией, выделяющейся при сжатии. Это приводит к сжатию и нагреву оболочки, сохранившей водород, к-рый загорается в тонком слое, окружающем гелиевое ядро (слоевой источник).

Энергия, выделяющаяся при сжатии гелиевого ядра и в водородном слоевом источнике, выходит наружу. Частично она поглощается водородной оболочкой, к-рая постепенно раздувается, уменьшая эфф. темп-ру при пост, светимости (участок BC).


По мере расширения оболочки и роста массы гелиевого ядра определяющую роль в поведении звезды начинают играть два фактора: конвекция, развивающаяся в оболочке, и вырождение, возникающее в ядре. Расширение оболочки и падение в ней темп-ры способствуют расширению внеш. конвективной зоны, к-рая имелась у звезды на ГП. Развитие конвекции приводит к улучшению теплоотвода, что, благодаря отрицат. теплоёмкости звезды, вызывает её сжатие, рост темп-ры, тепловыделения и светимости. Рост светимости способствует росту лучистого градиента темп-ры, что ещё больше усиливает конвекцию. T. о. возникает положительная обратная связь и конвекция захватывает значит, часть массы звезды, приближаясь к слоевому источнику. Светимость растёт, и звезда движется на ГРД от точки С к точке D (область красных гигантов).

По мере движения звезды к точке D происходит ускоренное горение водорода, масса изотермич. гелиевого ядра возрастает, что при условии равновесия приводит к росту его плотности. T. к. темп-pa ядра при этом близка к темп-ре водородного слоевого источника и увеличивается слабо, рост плотности приводит к вырождению ядра. Давление в нём практически перестаёт зависеть от темп-ры. В этих условиях небольшое увеличение темп-ры ядра, связанное с возгоранием гелия, почти не влияет на давление, звезда приобретает положит, теплоёмкость, к-рая обусловливает резкое увеличение скорости горения гелия (гелиевую вспышку) . Действительно, пока энерговыделение при горении гелия мало, звезда располагается на ГРД вблизи точки D и рост темп-ры и плотности приводит к росту энерговыделения, что в свою очередь увеличивает темп-ру. Возникает положительная обратная связь, приводящая к тепловой гелиевой вспышке в ядре. Развитие вспышки продолжается до тех пор, пока рост темп-ры не снимет вырождение в ядре, звезда приобретёт "нормальную" отрицат. теплоёмкость и дальнейшее горение гелия продолжится спокойно в невырожденном ядре. Особенностью гелиевой вспышки является то, что она запрятана в глубине звезды и внеш. проявления её почти отсутствуют. После образования невырожденного ядра звезда спускается вниз от точки D и поворачивает налево к линии EF (горизонтальная ветвь гигантов), где находится до тех пор, пока гелий в ядре превращается в углерод. Вновь образованное углеродное ядро становится вырожденным, возгорание гелия в слоевом источнике и образование двухслойного гелий-водородного горящего слоя приводят к развитию конвекции в оболочке, и вновь повторяется та же схема развития, причём звезда возвращается почти вдоль той же линии к точке D .

В отличие от водородных слоевых источников, где горение идёт спокойно, гелиевые слоевые источники неустойчивы относительно развития тепловой вспышки. Природа этой вспышки, так же, как и вспышки в гелиевом ядре, связана с положит. теплоёмкостью, ведущей к положительной обратной связи. Однако в слое положит, теплоёмкость обусловлена не вырождением (гелий здесь не вырожден), а геометрией области горения (тонкий слой) и быстрым ростом скорости энерговыделения с увеличением темп-ры при горении гелия. Механизм неустойчивости слоевого горения не столь очевиден, как в случае вспышки в вырожденном ядре, и требует для своего обоснования детальных расчётов.

T. о., в окрестности точки D располагаются спокойные звёзды с гелиевыми ядрами и вспыхивающие - с углеродными. Вспышки способствуют истечению вещества, поэтому по мере роста углеродного ядра полная масса звезды уменьшается. После неск. сотен вспышек (цифра примерная, т. к. никому не удалось последовательно просчитать столь много вспышек) в результате быстрого истечения вещества и роста ядра масса над гелиево-водородным слоевым источником уменьшается настолько, что при той же светимости начинаются быстрое оседание оболочки на ядро, рост эфф. темп-ры и. следовательно, движение звезды влево. После исчерпания горючего в слоевых источниках (точка G) светимость поддерживается только за счёт теплоёмкости ядра, к-рое быстро остывает, звезда движется по ГРД вниз и превращается в белый карлик (точка H) . На этой стадии звезда находится вплоть до полного остывания. Наблюдения свидетельствуют о том, что истечение вещества вблизи точки D происходит неравномерно и значит, доля массы сбрасывается непосредственно перед началом движения звезды влево, образуя планетарную туманность .

Звёзды с . У звёзд свремя жизни на ГП превышает космологич. время (2*10 10 лет), и все они либо находятся на ГП, либо движутся к ней. В звёздах свыгорание водорода сопровождается ростом плотности в центре звезды и приближением ядра к вырожденному состоянию. Пригелиевое ядро, образующееся после выгорания водорода, становится вырожденным, а оболочка сильно раздувается, приводя к росту светимости и уменьшению поверхностной темп-ры (рис. 2). Звезда становится красным гигантом. Вырожденное ядро неустойчиво относительно гелиевой вспышки. Гелиевая вспышка в ядре приводит к его расширению и снятию вырождения; при этом сгорает не более 1% гелия.

Рис. 2. Эволюционные треки звёзд [с начальным химическим составомX z (содержание элементов тяжелее гелия) - = 0,03] от главной последовательности до гелиевой вспышки (для М = 0,8 и 1,5) или до возгорания углерода в центре (для Цифры указывают массу звезды вточки соответствуют главной последовательности и моментам возгорания гелия и углерода в ядре.


Звёзды небольшой массы с невырожденным гелиевым ядром и водородной оболочкой после гелиевой вспышки располагаются на ГРД вблизи горизонтальной ветви гигантов (ГВГ, рис. 3). На этой ветви звёзды представляют собой гелиевые ядра массой окружённые водородными оболочками разл. массы. После выгорания гелия в ядре начинается его быстрое сжатие до загорания гелиевого слоевого источника. Звезда на ГРД движется вверх и направо к линии, называемой асимптотич. ветвью гигантов (АВГ). На этой линии звезда состоит из вырожденного углеродно-кислородного ядра и двух слоевых источников (гелиевого и водородного), расположенных очень близко друг от друга. Над ними располагается водородная оболочка, масса к-рой может достигать Удивительным свойством звёзд на АВГ является то, что их положение на ГРД зависит только от массы углеродного ядра и практически не зависит от массы водородной оболочки. Светимость L звезды на АВГ определяется ф-лой


где М сo - масса углеродно-кислородного ядра. С ростом MCO звезда движется на ГРД вверх по АВГ. Это движение не является спокойным.


Рис. 3. Огрублённые эволюционные треки звёзд с начальными массами M = 1. 5, 25 Жирные линии соответствуют основным стадиям горения в ядре (рядом указаны соответствующие реакции). Для М<2 . 3происходит гелиевая вспышка в ядре (ГВЯ), далее начинается спокойное горение 4 He в ядре. После выгорания 4 He в ядре звезда переходит на раннюю асимптотическую ветвь гигантов (РАНГ). Когда ядро, в котором выгорел 4 He, достигает массы начинаются тепловые вспышки (ТВ) в гелиевом слоевом источнике. На стадии АВГ происходит потеря массы, которая заканчивается быстрым сбросом остатка водородной оболочки в виде планетарной туманности (ПТ). СО-ядро массой превращается в белый карлик. Эволюция более массивных звёзд сна стадии АВГ и дальше происходит аналогично. Кружком с лучами отмечено начало свечения планетарной туманности, когда T , звезды достигает 3 · 10 4 К и начинается ионизация газа в ПТ.


Рис. 4. Эволюционный трек звезды, превращающейся в белый карлик, с начиная от РАВГ; начальный состав:
. Точками даны положения звезды перед очередной тепловой вспышкой, указан её номер. OM - огибающая минимумов светимости при вспышках. Показаны треки звезды в области минимумов вспышек № 7, 9 и 10. Заштрихованы участки на ГП и в области горения гелия в ядре (ГТЯ), где даны приближённые эволюционные треки звёзд с Штриховая линия слева соответствует звезде постоянного радиуса

Малая толщина слоевых источников приводит к тепловым вспышкам (ТВ). Кол-во вспышек при движении по АВГ растёт с ростом массы водородной оболочки и может превышать неск. тысяч. Время между вспышкамитакже зависит в основном от массы ядра и определяется выражением


В годах), а светимость звезды в максимуме вспышки


Характерным свойством звёзд на АВГ является интенсивная потеря массы. Считается, что звёзды стеряют всю водородную оболочку и превращаются в белый карлик массойМеханизм потери массы не вполне ясен, но считается (гл. обр. на основе данных наблюдений), что б. ч. массы теряется в виде спокойного истечения, а оставшаяся часть (неск. десятых долейсбрасывается быстро в виде сферич. оболочки, наблюдаемой как планетарная туманность. Эволюц. трек ядра планетарной туманности с, превращающегося в белый карлик, приведён на рис. 4 (схематически такие треки показаны на рис. 3). Времена на штриховых отметках t i и соответствующие массы водородных оболочек M об, равны


Звёзды с массой . У таких звёзд масса ядра достигает. При сжатии ядра в нём зажигается углерод. Горение углерода в вырожденном ядре звезды с неустойчиво, реакция приводит к взрыву и полному разлёту звезды. Возможно, подобные взрывы вызывают наблюдаемые вспышки сверхновых звёзд первого типа. В ядрах звёзд с нач. массами, превышающими(вплоть доуглеродное ядро не вырождено. Вырождение наступает на стадии образования ядра из Для

Вырожденное ядро сжимается в результате нейтронизацш вещества 24 Mg, сжатие переходит в гравитац. коллапс. При этом ядро разогревается за счёт неравновесной нейтронизации. В звёздах массой в вырожденном ядре развивается тепловая неустойчивость, к-рая, как и при гелиевой вспышке, ведёт к снятию вырождения и переходу в режим спокойного горения вплоть до появления 56 Fe в центре звезды. Судьба такой звезды схожа с судьбой более массивных звёзд.

Эволюция массивных звёзд . Горение в центр, областях этих звёзд проходит в отсутствие вырождения вплоть до образования железного ядра. Расчётные эволюц. треки массивных звёзд после образования гелиевого ядра чувствительны к физ. предположениям, методу расчёта и очень разнообразны. Это проявляется в разл. форме петель на ГРД (аналогичных петлям для на рис. 2), а также в значениях эфф. темп-ры звезды на стадии горения гелия. Различие физ. предположений состоит в выборе критерия конвективной неустойчивости, к-рый учитывает [критерий П. Леду (P. Ledoux)] или не учитывает [критерий К. Шварцшильда (К. Schwarzschild) ] стабилизирующую роль градиента хим. состава. С этим связано поведение т. н. полуконвективной зоны, к-рая появляется над конвективным ядром у звёзд сна стадии горения водорода и имеет очень небольшое превышение градиента темп-ры над адиабатическим. В моделях, учитывающих градиент хим. состава, зона полуконвекции отделена от конвективного ядра лучистым слоем, что препятствует перемешиванию. Если же использовать критерий Шварцшильда, то возникает частичное перемешивание и условия эволюции существенно меняются. Горение гелия происходит в области голубых сверхгигантов приа в случае критерия Леду гелий выгорает в области красных сверхгигантов с
С ростом массы растёт величинагде критич. светимость

При L = Lc сила светового давления на электроны уравновешивает силу гравитац. притяжения атомных ядер. В процессе движения звезды на ГРД направо в область красных сверхгигантов после образования гелиевого ядра в оболочке, где возникают зоны неполной ионизации гелия и водорода, резко возрастает непрозрачность и L/L c становится больше единицы. На этой стадии возможно резкое увеличение скорости потери массы звездой, так что может потеряться вся водородная оболочка. Наблюдения показывают существование очень ярких гелиевых звёзд типа Вольфа - Райе (WR, см. Вольфа - Райе звёзды у ),к-рых происходит мощное истечение вещества с потоком массыНа стадии образования WR-звёзд поток массы мог быть значительно больше.

Расчёт эволюции массивных звёзд требует самосогласованного учёта потери массы, так чтобы величина M получалась в расчётах однозначно, как L, R, T э ,. T. к. время потери массы M/M много больше гидродинамич. времени звездызвезда на стадии истечения может быть представлена в виде статич. ядра и стационарно истекающей оболочки, масса к-рой внутри критич. радиуса потока много меньше массы звезды; на критич. радиусе r к скорость v к равна скорости звука(см. Звёздный ветер ).Скорость потока быстро падает по мере перехода к плотным внутр. слоям звезды, и оболочка плавно переходит в статич. ядро. Сделаны лишь предварит, расчёты эволюции с самосогласованным учётом потери массы, хотя имеется много эволюц. расчётов с феноменологич. учётом потери массы, типа зависимостей

(L, R, M в единицах


Рис. 5. Эволюционные треки звёзд с массами 15 и 25BB" и BC -области горения гелия в ядре; CD - горение в двойном (H - Не) слоевом источнике; DE -горение углерода. Расчёты доведены до точки потери устойчивости (указана крестом в кружке), штриховые треки соответствуют не вполне уверенным расчётам.

Расчёт эволюции двух звёзд с пост, массами (M= 15 и вплоть до образования железного ядра в состоянии предсверхновой представлен на рис. 5. После возгорания углерода эволюция ядра идёт очень быстро, ввиду роста скорости нейтринных потерь, так что состояние оболочки почти не меняется и звезда мало движется по ГРД вплоть до начала коллапса. Наблюдения сверхновой 1987А в Большом Магеллановом Облаке показали, что предсверхновая здесь представляла собой голубой, а не красный сверхгигант, как показано на рис. 5. Это может быть связано с тем, что либо произошёл сброс значит, части водородной оболочки, либо звезда эволюционировала на треке вдоль петель, заходящих в голубую область. Если углерод загорелся в тот момент, когда звезда находилась в голубой области, её видимое положение на ГРД оставалось почти неизменным вплоть до потери устойчивости и вспышки сверхновой. Сравнение разл. расчётов показывает, что появление петель носит стохастич. характер, поэтому можно говорить лишь о вероятности расположения звезды в области голубых, жёлтых или красных сверхгигантов в состоянии предсверхновой.

Звёзды, превратившиеся в красные и жёлтые гиганты и сверхгиганты, после образования гелиевого ядра становятся в определ. области неустойчивыми относительно раскачки механич. колебаний и наблюдаются как переменные звёзды с регулярными колебаниями блеска (цефеиды и звёзды типа RR Лиры). Осн. причиной возбуждения колебаний в этих звёздах является аномальное поведение непрозрачности в зоне неполной ионизации гелия, толщина к-рой растёт с ростом темп-ры (см. Пульсации звёзд ).Вне ГП расположены и др. типы переменных звёзд с регулярной, полурегулярной и нерегулярной переменностью. Причиной переменности регулярных переменных, находящихся на стадиях Э. з. до и после ГП, является наличие мощных конвективных оболочек, приводящих к генерации ударных волн при звёздных вспышках, аналогичных вспышкам на Солнце , но на много порядков более мощных.

Предсверхновые и сверхновые

Сверхновые второго типа (с линиями водорода в спектрах и остатками в виде пульсаров )являются продуктом эволюции массивных звёзд сЯдра этих звёзд теряют устойчивость и коллапсируют после увеличения центр, темп-ры настолько, что начинается диссоциация ядер 56 Fe и адиабатич. показательстановится меньше 4/3. Значение g, усреднённое по звездеопределяет её гидродинамич. устойчивость. Неустойчивость имеет место при


В выражении член справа связан с эффектами общей теории относительности и равен нулю в ньютоновской теории, в к-ройотделяет устойчивые состояния от неустойчивых. Согласно результатам расчётов, представленным на рис. 5. ядра звёзд в точке вскоре после потери устойчивости характеризуются параметрами:


Здесь M , - масса ядра; Т с и r c - центральные темп-ра и плотность,-нейтринная светимость,-фотонная светимость,-радиус фотосферы; цифры в скобках указывают порядок величины. У звёзд массой ок. 8 образуется вырожденное углеродно-кислородное ядро массой 1,39, к-рое перед тепловой вспышкой характеризуется след, параметрами: (r я, - радиус ядра). Тепловые вспышки звёздных ядер, ведущие к полному разлёту звезды и выделению энергии ~ 10 51 эрг, связывают с наблюдаемыми вспышками сверхновых типа I, в спектрах к-рых водород не наблюдается, а в остатках взрыва не найдены пульсары. Вспышки сверхновых типапромежуточных между типами I и II (линии водорода почти не видны, но нейтронные звёзды могут образоваться), связаны, видимо, с потерей устойчивости в ядрах звёзд промежуточной массы или с вхождением этих звёзд в двойные системы.

Расчёты гидродинамич. коллапса ядер массивных звёзд показали, что подавляющая частьвыделяющейся гравитац. энергииэрг) уносится нейтрино. Внутр.части звезды оказываются непрозрачными для рождающихся там нейтрино, внутри звезды формируется нейтринная фотосфера. Нейтринный нагрев падающей оболочки, выгорание в ней оставшегося ядерного горючего во время коллапса, а также отскок падающей оболочки от поверхности образовавшейся нейтронной звезды оказываются недостаточными для того, чтобы выбросить вещество с ки-нетич. энергией эрг (характерной для сверхновых). Осн. причины этого заключаются в том, что нейтринный поток тормозит падение оболочки, а образующаяся при отскоке оболочки ударная волна дополнительно ослабляется из-за затраты большей части её энергии на диссоциацию в оболочке атомных ядер железного пика (т. е. ядер с массовыми числами, близкими к 56). Быстрые потери энергии за счёт испускания нейтрино из области нейтринной фотосферы приводят к увеличению градиента темп-ры и развитию конвекции. Это может существенно увеличить энергию каждого вылетающего нейтрино и соответственно сечение его взаимодействия с веществом, что способствует взрыву.

Энергия взрыва сверхновой может черпаться из энергии вращения образующейся нейтронной звезды, к-рая достигает 10 53 эрг. Важнейшую роль в трансформации энергии вращения в энергию взрыва играет магн. поле. Поэтому такой взрыв носит назв. магниторотационного. В дифференциально вращающейся оболочке вокруг нейтронной звезды происходит линейное по времени усиление азимутального магн. поля за счёт наматывания силовых линий. Когда магн. давление достаточно возрастёт, формируется ударная волна, к-рая усиливается при распространении в среде со спадающей плотностью и за счёт работы магн. поршня. Расчёты показывают, что ~3-5% энергии вращения может быть преобразовано в кинетич. энергию выброса. Этого достаточно для объяснения наблюдаемых сверхновых. В отличие от механизмов взрыва сферически-симметричных звёзд, где энергия выделяется в доли секунды, при магниторотационном взрыве выделение энергии может затянуться на неск. часов; при этом период вращения образующейся нейтронной звезды может превышать 10 миллисекунд (скорость вращения будет <~ 1/10 предельной, совместимой с устойчивостью нейтронной звезды).

Последние стадии эволюции звёзд

Звезда, у к-рой отсутствуют источники энергии, светит за счёт остывания, а равновесие в ней поддерживается давлением вырожденных электронов или нейтронов. Фун-дам. фактом является наличие предела массы у холодных звёзд, связанного с тем, что с ростом плотности наступает релятивистское вырождение электронов , а затем и нейтронов. Поэтому достаточно массивные звёзды теряют устойчивость и переходят в состояние релятивистского коллапса с образованием чёрной дыры. При плотностях г/см 3 вещество состоит из электронов и ядер. Энергия Ферми электроновуже при г/см 3 (m z - число нуклонов на электрон), поэтому можно использовать ур-ние состояния релятивистского вырожденного электронного газа

Для баротропного ур-ния состояния Р = Р(р )равновесие звезды определяется ур-ниями (1) и (2). В случае политропыиз (1) и (2) следует ур-ние равновесия:


масса звезды


Из ур-ния (9) следует, что примасса звезды независит от r с. Для ур-ния состояния (8) масса

Рис. 6. Зависимость массы от центральной плотности для равновесных холодных звёзд. Верхняя штриховая линия соответствует уравнению состояния для "чистых" нейтронов, нижняя-с учётом гиперонов.


Масса звёзд, у к-рых давление определяется вырожденными электронами, не может превысить (Чандрасекара предел) . Звёзды, в к-рых преобладает давление вырожденных электронов, наз. белыми карликами за их небольшие размеры и горячую поверхность. На графике для холодных звёзд (рис. 6) белые карлики расположены левее первого максимума. Для железного состава = 28/13; с учётом нейтронизации и кулоновских поправок к ур-нию состояния макс, масса железного белого карлика равна примерно когда центр, плотность ~1,4x При большей плотности m z растёт из-за нейтронизации и равновесная масса падает. При этом равновесные модели неустойчивы, а устойчивость восстанавливается, когда осн. вклад в давление начинают давать нерелятивистские вырожденные нейтроны (минимум на рис. 6, гдеПри столь высоких плотностях важную роль играет ядерное взаимодействие, поэтому в устойчивых нейтронных звёздах (между минимумом и вторым максимумом) нейтронный газ не является идеальным. Релятивистское вырождение нейтронов и эффекты ОТО приводят к потере устойчивости. В результате предельная масса нейтронной звезды (для реалистич. ур-ний состояния)

Звёзды с нач. массойтеряют вещество в процессе эволюции на АВГ и превращаются в белые карлики. Более массивные звёзды, не успевшие потерять массу и теряющие устойчивость, либо разлетаются в результате взрывного горения углерода, либо превращаются в нейтронные звёзды разл. типов. Если излишек массы не сбрасывается при коллапсе, то происходит релятивистский коллапс ядра си образование чёрной дыры. Предшественниками чёрных дыр являются наиб, массивные звёзды с нач. массами

Лит.: Франк-Каменецкий Д. А., Физические процессы внутри звезд, M., 1959; Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961; Внутреннее строение звезд, под ред. Л. Аллера. Д. M. Мак-Лафлина, пер. с англ., M., 1970; Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988; Бисноватый-Коган Г. С., Физические вопросы теории звездной эволюции. M.. 1989. Г . С. Бисноватый-Коган .

Горение водорода - самая длительная стадия в жизни звезды, что связано с начальным большим обилием водрода (70 по массе) и большой калорийностью () превращения водорода в гелий, что составляет около 70 энергии, получаемой в цепочке последовательных термоядерных превращений водорода в элемент c наибольшей энергией связи на нуклон (МэВ/нуклон). Фотонная светимость звезд на главной последовательности, где горит водород, как правило меньше, чем на последующих стадиях эволюции, а их нейтринная свтимость значительно меньше, т.к. центральные температуры не превышают K. Поэтому большая часть звезд в Галактике и во Вселенной являются звездами главной последовательности.

После окончания горения водорода в ядре звезда отходит вправо от главной последовательности на диаграмме эффективная температура - светимость (диаграмма Герцшпрунга-Рассела), ее эффективная температура уменьшается, и звезда перемещается в область красных гигантов. Это связано с конвективным переносом энергии от слоевого водородного источника, располагающегося непосредственно вблизи гелиевого ядра. В самом ядре температура из-за гравитационного сжатия постепенно повышается, и при температуре и плотности г/см начинается горение гелия. (Замечание : так как в природе нет устойчивых элементов с атомными номерами 5 и 8, невозможна реакция, а бериллий-8 распадается на 2 альфа-частицы

Выделение энергии на грамм при горении гелия примерно на порядок меньше, чем при горении водорода. Поэтому время жизни и число звезд на этой стадии эволюции значительно меньше, чем звезд главной последовательности. Но благодаря высокой светимости (стадия красного гиганта или сверхгиганта) эти звезды хорошо изучены.

Наиболее важная реакция - - процесс: Энергия суммы трех альфа-частиц на 7.28 МэВ превышает энергию покоя ядра углерода-12. Поэтому чтобы реакция эффективно шла, нужен "подходящий" энергетический уровень ядра углерода-12. Такой уровень (с энергией 7.656 МэВ) у ядра имеется, поэтому 3-реакция в звездах носит резонансный характер и поэтому идет с достаточной скоростью. Две альфа-частицы образуют корткоживущее ядро: . Время жизни около c, но есть вероятность присоединения еще одной альфа-частицы с образованеим возбужденного ядра углерода-12: . Возбуждение снимается рождением пары, а не фотоном, т.к. фотонный переход с этого уровня запрещен правилами отбора: . Заметим, что образующийся атом в основном сразу же "разваливается" на Be и He и в конечном счете на 3 альфа-частицы, и только в одном случае из 2500 происходит переход на основной уровень с выделением 7.65 МэВ энергии, уносимой парой.

Скорость дальнейшей реакции

сильно зависит от температуры (определяемой массой звезды), поэтому окончательный результат горения гелия в массивных звездах - образование углеродного, углеродно-кислородного или чисто кислородного ядра.

На последующих стадиях эволюции массивных звезд в центральных областях звезды при высоких температурах происходят реакции непосредственного слияния тяжелых ядер. Энерговыделение в реакциях горения сравнимо с энерговыделением в -реакции, однако мощное нейтринное излучение из-за высокой температуры (K) делает время жизни звезды на этих стадиях много меньше, чем время горения гелия. Вероятность обнаружения таких звезд крайне мала, и в настоящее время нет ни одного уверенного отождествления звезды в спокойном состоянии, выделяющей энергию за счет горения или более тяжелых элементов.


Рис. 7.1 Расчет эволюции звезды с начальной массой 22 как функция времени с момента загорания водорода в ядре до начала коллапса. Время (в логарифмическом масштабе) отсчитывается от момента начала коллапса. По оси ординат - масса в солнечных единицах, отсчитываемая от центра. Отмечены стадии термоядерного горения различных элементов (включая слоевые источники). Цветом показана интенсивность нагрева (синий) и нейтринного охлаждения (фиолетовый). Штриховкой отмечены конвективно-неустойчивые области звезды. Рассчеты Heger A., Woosley S. (Рисунок из обзора Langanke K., Martinez-Pinedo G., 2002, nucl-th/0203071)