Четные и нечетные числа. Понятие о десятичной записи числа. Нечётное число 3 четное число или нет

Итак, я начну свою историю с четных чисел. Какие числа четные? Любое целое число, которое можно разделить на два без остатка, считается четным. Кроме того, четные числа заканчиваются на одну из данного ряда цифру: 0, 2, 4, 6 или 8.

Например: -24, 0, 6, 38 — все это четные числа.

m = 2k — общая формула написания четных чисел, где k - целое число. Данная формула может понадобиться для решения многих задач или уравнений в начальных классах.

Есть еще один вид чисел в огромном царстве математики — это нечетные числа. Любое число, которое нельзя разделить на два без остатка, а при делении на два остаток равен единице, принято называть нечетным. Любое из них заканчивается на одну из таких цифр: 1, 3, 5, 7 или 9.

Пример нечетных чисел: 3, 1, 7 и 35.

n = 2k + 1 — формула, с помощью которой можно записать любые нечетные числа, где k - целое число.

Сложение и вычитание четных и нечетных чисел

В сложении (или вычитании) четных и нечетных чисел есть некоторая закономерность. Мы представили ее с помощью таблицы, которая находится ниже, для того чтобы вам было проще понять и запомнить материал.

Операция

Результат

Пример

Четное + Четное

Четное + Нечетное

Нечетное

Нечетное + Нечетное

Четные и нечетные числа будут вести себя так же, если вычитать, а не суммировать их.

Умножение четных и нечетных чисел

При умножении четные и нечетные числа ведут себя закономерно. Вам заранее будет известно, получится результат четным или нечетным. В таблице ниже представлены все возможные варианты для лучшего усвоения информации.

Операция

Результат

Пример

Четное * Четное

Четное * Нечетное

Нечетное * Нечетное

Нечетное

А теперь рассмотрим дробные числа.

Десятичная запись числа

Десятичные дроби — это числа со знаменателем 10, 100, 1000 и так далее, которые записаны без знаменателя. Целую часть отделяют от дробной с помощью запятой.

Например: 3,14; 5,1; 6,789 — это все

С десятичными дробями можно производить различные математические действия, такие как сравнение, суммирование, вычитание, умножение и деление.

Если вы хотите сравнять две дроби, сначала уравняйте количество знаков после запятой, приписывая к одному из них нули, а потом, отбросив запятую, сравните их как целые числа. Рассмотрим это на примере. Сравним 5,15 и 5,1. Для начала уравняем дроби: 5,15 и 5,10. Теперь запишем их, как целые числа: 515 и 510, следовательно, первое число больше, чем второе, значит 5,15 больше, чем 5,1.

Если вы хотите суммировать две дроби, следуйте такому простому правилу: начните с конца дроби и суммируйте сначала (например) сотые, потом десятые, затем целые. С помощью этого правила можно легко вычитать и умножать десятичные дроби.

А вот делить дроби нужно как целые числа, в конце отсчитывая, где надо поставить запятую. То есть сначала делите целую часть, а потом - дробную.

Так же десятичные дроби следует округлять. Для этого выберите, до какого разряда вы хотите округлить дробь, и замените соответствующее количество цифр нулями. Имейте ввиду, если следующая за этим разрядом цифра лежала в пределах от 5 до 9 включительно, то последнюю цифру, которая осталась, увеличивают на единицу. Если же следующая за этим разрядом цифра лежала в пределах от 1 до 4 включительно, то последнюю оставшуюся не изменяют.

  • Нечётное число - целое число , которое не делится на без остатка : …, −3, −1, 1, 3, 5, 7, 9, …

Если m чётно, то оно представимо в виде m = 2 k, а если нечётно, то в виде m = 2 k + 1, где k \in \mathbb Z.

История и культура

Понятие чётности чисел известно с глубокой древности и ему часто придавалось мистическое значение. В китайской космологии и натурософии чётные числа соответствуют понятию «инь », а нечётные - «ян » .

В разных странах существуют связанные с количеством даримых цветов традиции. Например в США , Европе и некоторых восточных странах считается, что чётное количество даримых цветов приносит счастье . В России и странах СНГ чётное количество цветов принято приносить лишь на похороны умершим. Однако, в случаях, когда в букете много цветов (обычно больше ), чётность или нечётность их количества уже не играет никакой роли. Например, вполне допустимо подарить даме букет из 12, 14, 16 и т. д. цветов или срезов кустового цветка, имеющих множество бутонов , у которых они, в принципе, не подсчитываются. Тем более это относится к бо́льшему количеству цветов (срезов), даримых в других случаях.

Практика

В высших учебных заведениях со сложными графиками учебного процесса применяются чётные и нечётные недели. Внутри этих недель отличается расписание учебных занятий и в некоторых случаях время их начала и окончания. Такая практика применяется для равномерности распределения нагрузки по аудиториям, учебным корпусам и для ритмичности занятий по дисциплинам с малой аудиторной нагрузкой (1 раз в 2 недели)

В графиках движения поездов применяются чётные и нечётные номера поездов, зависящие от направления движения (прямое или обратное). Соответственно чётностью/нечётностью обозначается направление, в котором проходит поезд через каждую станцию.

С чётными и нечётными числами месяца иногда увязаны графики движения поездов, которые организованы через день.

Напишите отзыв о статье "Чётные и нечётные числа"

Примечания

Ссылки

  • Последовательность A005408 в OEIS : нечётные числа
  • Последовательность A005843 в OEIS : чётные числа
  • Последовательность A179082 в OEIS : чётные числа с чётной суммой цифр в десятичной записи

Отрывок, характеризующий Чётные и нечётные числа

– Так, так, – сказал князь Андрей, обращаясь к Алпатычу, – все передай, как я тебе говорил. – И, ни слова не отвечая Бергу, замолкшему подле него, тронул лошадь и поехал в переулок.

От Смоленска войска продолжали отступать. Неприятель шел вслед за ними. 10 го августа полк, которым командовал князь Андрей, проходил по большой дороге, мимо проспекта, ведущего в Лысые Горы. Жара и засуха стояли более трех недель. Каждый день по небу ходили курчавые облака, изредка заслоняя солнце; но к вечеру опять расчищало, и солнце садилось в буровато красную мглу. Только сильная роса ночью освежала землю. Остававшиеся на корню хлеба сгорали и высыпались. Болота пересохли. Скотина ревела от голода, не находя корма по сожженным солнцем лугам. Только по ночам и в лесах пока еще держалась роса, была прохлада. Но по дороге, по большой дороге, по которой шли войска, даже и ночью, даже и по лесам, не было этой прохлады. Роса не заметна была на песочной пыли дороги, встолченной больше чем на четверть аршина. Как только рассветало, начиналось движение. Обозы, артиллерия беззвучно шли по ступицу, а пехота по щиколку в мягкой, душной, не остывшей за ночь, жаркой пыли. Одна часть этой песочной пыли месилась ногами и колесами, другая поднималась и стояла облаком над войском, влипая в глаза, в волоса, в уши, в ноздри и, главное, в легкие людям и животным, двигавшимся по этой дороге. Чем выше поднималось солнце, тем выше поднималось облако пыли, и сквозь эту тонкую, жаркую пыль на солнце, не закрытое облаками, можно было смотреть простым глазом. Солнце представлялось большим багровым шаром. Ветра не было, и люди задыхались в этой неподвижной атмосфере. Люди шли, обвязавши носы и рты платками. Приходя к деревне, все бросалось к колодцам. Дрались за воду и выпивали ее до грязи.
Князь Андрей командовал полком, и устройство полка, благосостояние его людей, необходимость получения и отдачи приказаний занимали его. Пожар Смоленска и оставление его были эпохой для князя Андрея. Новое чувство озлобления против врага заставляло его забывать свое горе. Он весь был предан делам своего полка, он был заботлив о своих людях и офицерах и ласков с ними. В полку его называли наш князь, им гордились и его любили. Но добр и кроток он был только с своими полковыми, с Тимохиным и т. п., с людьми совершенно новыми и в чужой среде, с людьми, которые не могли знать и понимать его прошедшего; но как только он сталкивался с кем нибудь из своих прежних, из штабных, он тотчас опять ощетинивался; делался злобен, насмешлив и презрителен. Все, что связывало его воспоминание с прошедшим, отталкивало его, и потому он старался в отношениях этого прежнего мира только не быть несправедливым и исполнять свой долг.
Правда, все в темном, мрачном свете представлялось князю Андрею – особенно после того, как оставили Смоленск (который, по его понятиям, можно и должно было защищать) 6 го августа, и после того, как отец, больной, должен был бежать в Москву и бросить на расхищение столь любимые, обстроенные и им населенные Лысые Горы; но, несмотря на то, благодаря полку князь Андрей мог думать о другом, совершенно независимом от общих вопросов предмете – о своем полку. 10 го августа колонна, в которой был его полк, поравнялась с Лысыми Горами. Князь Андрей два дня тому назад получил известие, что его отец, сын и сестра уехали в Москву. Хотя князю Андрею и нечего было делать в Лысых Горах, он, с свойственным ему желанием растравить свое горе, решил, что он должен заехать в Лысые Горы.
Он велел оседлать себе лошадь и с перехода поехал верхом в отцовскую деревню, в которой он родился и провел свое детство. Проезжая мимо пруда, на котором всегда десятки баб, переговариваясь, били вальками и полоскали свое белье, князь Андрей заметил, что на пруде никого не было, и оторванный плотик, до половины залитый водой, боком плавал посредине пруда. Князь Андрей подъехал к сторожке. У каменных ворот въезда никого не было, и дверь была отперта. Дорожки сада уже заросли, и телята и лошади ходили по английскому парку. Князь Андрей подъехал к оранжерее; стекла были разбиты, и деревья в кадках некоторые повалены, некоторые засохли. Он окликнул Тараса садовника. Никто не откликнулся. Обогнув оранжерею на выставку, он увидал, что тесовый резной забор весь изломан и фрукты сливы обдерганы с ветками. Старый мужик (князь Андрей видал его у ворот в детстве) сидел и плел лапоть на зеленой скамеечке.
Он был глух и не слыхал подъезда князя Андрея. Он сидел на лавке, на которой любил сиживать старый князь, и около него было развешено лычко на сучках обломанной и засохшей магнолии.
Князь Андрей подъехал к дому. Несколько лип в старом саду были срублены, одна пегая с жеребенком лошадь ходила перед самым домом между розанами. Дом был заколочен ставнями. Одно окно внизу было открыто. Дворовый мальчик, увидав князя Андрея, вбежал в дом.
Алпатыч, услав семью, один оставался в Лысых Горах; он сидел дома и читал Жития. Узнав о приезде князя Андрея, он, с очками на носу, застегиваясь, вышел из дома, поспешно подошел к князю и, ничего не говоря, заплакал, целуя князя Андрея в коленку.

Во вселенной существуют пары противоположностей, которые являются важным фактором ее устройства. Основные свойства, которые нумерологи приписывают четным (1, 3, 5, 7, 9) и нечетным (2, 4, 6, 8) числам, как парам противоположностей, следующие:

1 - активный, целеустремленный, властный, черствый, руководящий, инициативный;
2 - пассивный, восприимчивый, слабый, сочувствующий, подчиненный;
3 - яркий, веселый, артистичный, удачливый, легко добивающийся успеха;
4 - трудолюбивый, скучный, безынициативный, несчастный, тяжелый труд и частое поражение;
5 - подвижный, предприимчивый, нервный, неуверенный, сексуальный;
6 - простой, спокойный, домашний, устроенный; материнская любовь;
7 - уход от мира, мистика, тайны;
8 - мирская жизнь; материальная удача или поражение;
9 - интеллектуальное и духовное совершенство.

Нечетные числа обладают гораздо более яркими свойствами. Рядом с энергией "1", блеском и удачливостью "3", авантюрной подвижностью и многогранностью "5", мудростью "7" и совершенством "9" четные числа выглядят не столь ярко. Насчитывается 10 основных пар противоположностей, существующих во Вселенной. Среди этих пар: четное - нечетное, один - много, правое - левое, мужское - женское, добро - зло. Один, правое, мужское и доброе ассоциировалось с нечетными числами; много, левое, женское и злое - с четными.

Нечетные числа обладают некой производящей серединой, в то время как в любом четном числе есть воспринимающее отверстие как бы лакуна внутри себя. Мужские свойства фаллических нечетных чисел вытекают из того факта, что они сильнее четных. Если четное число расщепить пополам, то, кроме пустоты, посередине ничего не останется. Нечетное число разбить непросто, потому что посередине остается точка. Если же соединить вместе четное и нечетное числа, то победит нечетное, так как результат всегда будет нечетным. Именно поэтому нечетные числа обладают мужскими свойствами, властными и резкими, а четные - женскими, пассивными и воспринимающими.

Нечетных чисел нечетное число: их пять. Четных чисел четное число - четыре.

Нечетные числа - солнечные, электрические, кислотные и динамичные. Они являются слагаемыми; их с чем либо складывают. Четные числа - лунные, магнетические, щелочные и статичные. Они являются вычитаемыми, их уменьшают. Они остаются без движения, потому что имеют четные группы пар (2 и 4; 6 и 8).

Если мы сгруппируем нечетные числа, одно число всегда останется без своей пары (1 и 3; 5 и 7; 9). Это делает их динамичными. Два подобных числа (два нечетных числа или два четных) не являются благоприятными.

четное + четное = четное (статичное) 2+2=4
четное + нечетное = нечетное (динамичное) 3+2=5
нечетное + нечетное = четное (статичное) 3+3=6

Некоторые числа дружественны, другие - противостоят друг другу. Взаимоотношения чисел определяются отношениями между планетами, которые ими управляют (подробности в разделе "Совместимость чисел"). Когда два дружественных числа соприкасаются, их сотрудничество не очень продуктивно. Подобно друзьям, они расслабляются - и ничего не происходит. Но когда в одной комбинации находятся враждебные числа, они заставляют друг друга быть настороже и побуждают к активным действиям; таким образом, эти два человека работают намного больше. В таком случае, враждебные числа оказываются на самом деле друзьями, а друзья - настоящими врагами, тормозящими прогресс. Нейтральные числа остаются неактивными. Они не дают поддержки, не вызывают и не подавляют активность.

Как мы видели выше, любая подстановка разлагается в произведение транспозиций. Вообще говоря, одну и ту же подстановку можно представить в виде произведения транспозиций многими различными способами. Например, очевидно, что

(формулы (1) и (2) выражают, как легко видеть, один и тот же факт, но в различных обозначениях).

Лемма. Если произведение нескольких транспозиций равно тождественной подстановке, то число этих транспозиций четно.

Мы докажем эту лемму индукцией по числу s различных чисел, входящих в записи данных транспозиций.

Наименьшее возможное значение числа s равно, очевидно, двум. Если , то рассматриваемое произведение является степенью некоторой транспозиции и поэтому равно тождественной подстановке только тогда, когда показатель степени четен (ибо любая транспозиция имеет порядок 2). Таким образом, в случае лемма доказана.

Предполагая теперь, что лемма уже доказана для любого произведения транспозиций, записи которых содержат менее s различных чисел, рассмотрим некоторое, равное тождественной подстановке произведение транспозиций

в записи которых входит ровно s различных чисел. Пусть I - одно из этих чисел. Пользуясь соотношением (1) и тем, что независимые транспозиции перестановочны, мы можем «переместить вперед» все транспозиции, в запись которых входит число i, т. е. перейти от произведения (3) к равному произведению вида

в котором все числа отличны от числа l. Если , то, пользуясь соотношением (2) или соотношением

мы можем от произведения (4) перейти к произведению такого же вида, но с меньшим . В результате ряда таких преобразований мы либо полностью уничтожим все транспозиции, в записи которых входит число l, либо получим произведение, содержащее только одну такую транспозицию:

Но это произведение переводит, очевидно, число в число l и потому не может быть тождественной подстановкой. Следовательно, последний случай невозможен. Таким образом, в результате наших преобразований мы получим равное тождественной подстановке произведение транспозиций, записи которых не содержат числа l. Никаких новых чисел записи этих подстановок, очевидно, не содержат. Следовательно, согласно предположению индукции, в это произведение входит четное число транспозиций.

Остается заметить, что при описанных преобразованиях число транспозиций либо не меняется (когда мы пользуемся соотношениями (1), (2)), либо уменьшается на две единицы (когда мы пользуемся соотношением . Поэтому исходное произведение (3) также состоит из четного числа транспозиций. Тем самым лемма полностью доказана.

Пусть теперь некоторая подстановка а двумя способами разложена в произведение транспозиций:

(первое разложение содержит транспозиций, а второе q). Тогда

и, следовательно, по доказанной лемме, число четно.

Таким образом, числа и q либо одновременно четны, либо одновременно нечетны. Другими словами, при всех разложениях подстановки в произведение транспозиций четность числа этих транспозиций будет одна и та же.

Подстановка называется четной, если она разлагается в произведение четного числа транспозиций, и нечетной - в противном случае. Согласно доказанной теореме, четность подстановки не зависит от выбора ее разложения в произведение транспозиций.

Любая транспозиция, или вообще любой цикл четной длины, является нечетной подстановкой, а любой цикл нечетной длины, в частности любой цикл длины 3, является четной подстановкой. Тождественная подстановка, очевидно, четна.

Разложение подстэновки а в произведение транспозиций, то

откуда следует, что подстановка, обратная - четной подстановке, четна, обратная нечетной - нечетна.

Целое число называется четным, если оно делится на 2; в противном случае оно называется нечетным. Таким образом, четными числами являются

и нечетными числами -

Из делимости четных чисел на два вытекает, что каждое четное число можно записать в виде , где символ обозначает произвольное целое число. Когда некоторый символ (подобно букве в рассматриваемом нами случае) может представлять любой элемент некоторого определенного множества объектов (множества целых чисел в нашем случае), мы говорим, что областью значений этого символа является указанное множество объектов. В соответствии с этим в рассматриваемом случае мы говорим, что каждое четное число может быть записано в виде , где область значений символа совпадает с множеством целых чисел. Например, четные числа 18, 34, 12 и -62 имеют вид , где соответственно равно 9, 17, 6 и -31. Нет особой причины использовать здесь именно букву . Вместо того чтобы говорить, что четными числами являются целые числа вида равным образом можно было бы сказать, что четные числа имеют вид или или

При сложении двух четных чисел в результате получается тоже четное число. Это обстоятельство иллюстрируется следующими примерами:

Однако для доказательства общего утверждения о том, что множество четных чисел замкнуто относительно сложения, недостаточно набора примеров. Чтобы дать такое доказательство, обозначим одно четное число через , а другое - через . Складывая эти числа, можно написать

Сумма записана в виде . Из этого видна ее делимость на 2. Было бы недостаточно написать

поскольку последнее выражение представляет собой сумму четного числа и того же самого числа. Иными словами, мы доказали бы, что удвоенное четное число есть опять четное число (в действительности делящееся даже на 4), в то время как нужно доказать, что сумма любых двух четных чисел есть число четное. Поэтому мы использовали обозначение для одного четного числа и для другого четного числа с тем, чтобы указать, что эти числа могут быть и разными.

Какое обозначение можно использовать для записи любого нечетного числа? Отметим, что при вычитании 1 из нечетного числа получается четное число. Поэтому можно утверждать, что любое нечетное число записывается виде Запись такого рода не единственна. Подобным же образом мы могли бы заметить, что при прибавлении 1 к нечетному числу получается четное число, и могли бы заключить отсюда, что любое нечетное число записывается в виде

Аналогично можно сказать, что любое нечетное число записывается в виде или или и т. д.

Можно ли утверждать, что каждое нечетное число записывается в виде Подставляя в эту формулу вместо целые числа

получаем следующее множество чисел:

Каждое из этих чисел нечетно, однако ими не исчерпываются все нечетные числа. Например, нечетное число 5 не может быть так записано. Таким образом, неверно, что каждое нечетное число имеет вид , хотя каждое целое число вида нечетно. Аналогично неверно, что каждое четное число записывается в виде где область значений символа k есть множество всех целых чисел. Например, 6 не равно какое бы целое число ни взять в качестве А. Однако каждое целое число вида четно.

Соотношение между этими утверждениями - то же самое, что и между утверждениями «все кошки - животные» и «все животные - кошки». Ясно, что первое из них верно, а второе - нет. Это соотношение будет обсуждаться дальше при разборе утверждений, включающих фразы «тогда», «только тогда» и «тогда и только тогда» (см. § 3 гл. II).

Упражнения

Какие из следующих утверждений верны и какие ложны? (Предполагается, что областью значений символов является совокупность всех целых чисел.)

1. Каждое нечетное число может быть представлено в виде

2. Каждое целое число вида а) (см. упр. 1) нечетно; это же имеет место для чисел вида б), в), г), д) и е).

3. Каждое четное число может быть представлено, в виде

4. Каждое целое число вида а) (см. упр. 3) четно; то же самое имеет место для чисел вида б), в), г) и д).