Инерциальная система отсчёта. Инерциальные системы отсчета: первый закон Ньютона Сила. масса тела

На всякое тело могут оказывать воздействия другие тела, его окружающие, в результате чего может измениться состояние движения (покоя) наблюдаемого тела. Вместе с тем такие воздействия могут быть скомпенсированы (уравновешены) и не вызывать таковых изменений. Когда говорят, что действия двух или нескольких тел компенсируют друг друга, то это значит, что результат их совместного действия такой же, как если бы этих тел вовсе не было. Если влияние на тело других тел компенсируется, то относительно Земли тело находится или в покое, или движется прямолинейно и равномерно.

Таким образом, мы приходим к одному из основных законов механики, который называется первым законом Ньютона.

1-й закон Ньютона (закон инерции)

Существуют такие системы отсчёта, в которых поступательно движущееся тело находится в состоянии покоя или равномерного прямолинейного движения (движения по инерции) до тех пор, пока воздействия со стороны других тел не выведут его из этого состояния.

Применительно к сказанному, изменение скорости тела (т.е. ускорение) всегда вызывается воздействием на это тело каких-либо других тел.

1-й закон Ньютона выполняется только в инерциальных система отсчёта.

Определение

Системы отсчёта, относительно которых тело, не испытывающее на себе воздействия других тел, покоится или движется равномерно и прямолинейно, называются инерциальными.

Установить, является ли данная система отсчёта инерциальной, можно лишь опытным путём. В большинстве случаев можно считать инерциальными системы отсчёта, связанные с Землёй или с телами отсчёта, которые по отношению к земной поверхности движутся равномерно и прямолинейно.

Рисунок 1. Инерциальные системы отсчёта

В настоящее время экспериментально подтверждено, что практически инерциальна гелиоцентрическая система отсчета, связанная с центром Солнца и тремя "неподвижными" звездами.

Любая другая система отсчета, движущаяся относительно инерциальной равномерно и прямолинейно, сама является инерциальной.

Галилей установил, что никакими механическими опытами, поставленными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно. Это утверждение носит название принципа относительности Галилея, или механического принципа относительности.

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. ИСО играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любого закона физики имеет одинаковый вид в каждой ИСО.

Если тело отсчёта движется с ускорением, то связанная с ним система отсчёта является неинерциальной, и в ней 1-й закон Ньютона несправедлив.

Свойство тел сохранять во времени своё состояние (скорость движения, направление движения, состояние покоя и т.п.) называют инертностью. Само явление сохранения скорости движущимся телом при отсутствии внешних воздействий называется инерцией.

Рисунок 2. Проявления инерции в автобусе при начале движения и торможении

С проявлением инертности тел мы часто встречаемся в повседневности. При резком ускорении автобуса пассажиры, находящиеся в нём, наклоняются назад (рис.2,а), а при резком торможении автобуса наклоняются вперёд (рис.2,б), а при повороте автобуса вправо - к левой его стенке. При большом ускорении взлетающего самолёта тело пилота, стремясь сохранить первоначальное состояние покоя, прижимается к сидению.

Инертность тел наглядно проявляется при резкой смене ускорений тел системы, когда инерциальная система отсчёта сменяется неинерциальной, и наоборот.

Инертность тела принято характеризовать его массой (инертной массой).

Сила, действующая на тело со стороны неинерциальной системы отсчета, называется силой инерции

Если на тело в неинерциальной системе отсчета одновременно действуют несколько сил, одни из которых являются "обычными" силами, а другие - инерциальными, то тело будет испытывать одну результирующую силу, являющуюся векторной суммой всех действующих на него сил. Эта результирующая сила не является силой инерции. Сила инерции - это только составляющая результирующей силы.

Если палочку, подвешенную на двух тонких нитях, медленно потянуть за шнур, прикрепленный к ее центру, то:

  1. палочка сломается;
  2. оборвется шнур;
  3. оборвется одна из нитей;
  4. возможен любой вариант, в зависимости от приложенной силы

Рисунок 4

Сила приложена к середине палочки, в месте подвеса шнура. Поскольку, по 1 закону Ньютона, всякое тело обладает инертностью, часть палочки в точке подвеса шнура будет двигаться под действием приложенной силы, а другие части палочки, на которые сила не действует, останутся в покое. Потому сломается палочка в точке подвеса.

Ответ. Правильный ответ 1.

Человек везет двое связанных саней, прикладывая силу под углом 300 к горизонту. Найдите эту силу, если известно, что сани движутся равномерно. Массы саней по 40 кг. Коэффициент трения 0,3.

$т_1$ = $т_2$ = $m$ = 40 кг

${\mathbf \mu }$ = 0,3

${\mathbf \alpha }$=$30^{\circ}$

$g$ = 9.8 м/с2

Рисунок 5

Так как сани движутся с постоянной скоростью, то по первому закону Ньютона сумма сил, действующих на сани, равна нулю. Запишем первый закон Ньютона для каждого тела сразу в проекции на оси, и добавим закон сухого трения Кулона для саней:

Ось ОХ Ось OY

\[\left\{ \begin{array}{c} T-F_{тр1}=0 \\ F_{тр1}=\mu N_1 \\ F_{тр2}=\mu N_2 \\ F{cos \alpha -\ }F_{тр2}-T=0 \end{array} \right. \left\{ \begin{array}{c} N_1-mg=0 \\ N_2+F{sin \alpha \ }-mg=0 \end{array} \right.\]

$F=\frac{2\mu mg}{{cos \alpha \ }+\mu {sin \alpha \ }}=\ \frac{2\cdot 0.3\cdot 40\cdot 9.8}{{cos 30{}^\circ \ }+0.3\cdot {sin 30{}^\circ \ }}=231.5\ H$

Первый закон механики, или закон инерции (инерция – это свойство тел сохранять свою скорость при отсутствии действия на него других тел), как его часто называют, был установлен еще Галилеем. Но строгую формулировку этого закона дал и включил его в число основных законов механики Ньютон. Закон инерции относится к самому простому случаю движения – движению тела, на которое не оказывают воздействия другие тела. Такие тела называются свободными телами.

Ответить на вопрос, как движутся свободные тела, не обращаясь к опыту, нельзя. Однако нельзя поставить ни одного опыта, который бы в чистом виде показал, как движется ни с чем не взаимодействующее тело, так как таких тел нет. Как же быть?

Имеется лишь один выход. Надо создать для тела условия, при которых влияние внешних воздействий можно делать все меньшим и меньшим, и наблюдать, к чему это ведет. Можно, например, наблюдать за движением гладкого камня на горизонтальной поверхности, после того как ему сообщена некоторая скорость. (Притяжение камня к земле уравновешивается действием поверхности, на которую он опирается, и на скорость его движения влияет только трение.) При этом легко обнаружить, что чем более гладкой является поверхность, тем медленнее будет уменьшаться скорость камня. На гладком льду камень скользит весьма долго, заметно не меняя скорость. Трение можно уменьшить до минимума с помощью воздушной подушки – струй воздуха, поддерживающих тело над твердой поверхностью, вдоль которой происходит движение. Этот принцип используется в водном транспорте (суда на воздушной подушке). На основе подобных наблюдений можно заключить: если бы поверхность была идеально гладкой, то при отсутствии сопротивления воздуха (в вакууме) камень совсем не менял бы своей скорости. Именно к такому выводу впервые пришел Галилей.

С другой стороны, нетрудно заметить, что, когда скорость тела меняется, всегда обнаруживается воздействие на него других тел. Отсюда можно прийти к выводу, что тело, достаточно удаленное от других тел и по этой причине не взаимодействующее с ними, движется с постоянной скоростью .

Движение относительно, поэтому имеет смысл говорить лишь о движении тела по отношению к системе отсчета, связанной с другим телом. Сразу же возникает вопрос: будет ли свободное тело двигаться с постоянной скоростью по отношению к любому другому телу? Ответ, конечно, отрицательный. Так, если по отношению к Земле свободное тело движется прямолинейно и равномерно, то по отношению к вращающейся карусели тело заведомо так двигаться не будет.

Наблюдения за движениями тел и размышления о характере этих движений приводят нас к заключению о том, что свободные тела движутся с постоянной скоростью, по крайней мере, по отношению к определенным телам и связанным с ними системам отсчета. Например, по отношению к Земле. В этом состоит главное содержание закона инерции.

Поэтому первый закон Ньютона может быть сформулирован так:

существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на неё внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Инерциальная система отсчета

Первый закон Ньютона утверждает (это с той или иной степенью точности можно проверить на опыте) о том, что инерциальные системы существуют в действительности. Этот закон механики ставит в особое, привилегированное положение инерциальные системы отсчета.

Системы отсчета , в которых выполняется первый закон Ньютона, называют инерциальными .

Инерциальные системы отсчета – это системы, относительно которых материальная точка при отсутствии на нее внешних воздействий или их взаимной компенсации покоится или движется равномерно и прямолинейно.

Инерциальных систем существует бесконечное множество. Система от-счета, связанная с поездом, идущим с постоянной скоростью по прямолинейному участку пути, – тоже инерциальная система (приближенно), как и система, связанная с Землей. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно. Ускорения какого-либо тела в разных инерциальных системах одинаковы.

Как установить, что данная система отсчета является инерциальной? Это можно сделать только опытным путем. Наблюдения показывают, что с очень высокой степенью точности можно считать инерциальной системой отсчета гелиоцентрическую систему, у которой начало координат связано с Солнцем, а оси направлены на определенные «неподвижные» звезды. Системы отсчета, жестко связанные с поверхностью Земли, строго говоря, не являются инерциальными, так как Земля движется по орбите вокруг Солнца и при этом вращается вокруг своей оси. Однако при описании движений, не имеющих глобального (т.е. всемирного) масштаба, системы отсчета, связанные с Землей, можно с достаточной точностью считать инерциальными.

Инерциальными являются системы отсчета, которые движутся равномерно и прямолинейно относительно какой-либо инерциальной системы отсчета .

Галилей установил, что никакими механическими опытами, поставлен-ными внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется равномерно и прямолинейно . Это утверждение носит название принципа относительности Галилея или механического принципа относительности .

Этот принцип был впоследствии развит А. Эйнштейном и является одним из постулатов специальной теории относительности. Инерциальные системы отсчета играют в физике исключительно важную роль, так как, согласно принципу относительности Эйнштейна, математическое выражение любою закона физики имеет одинаковый вид в каждой инерциальной системе отсчета. В дальнейшем мы будем пользоваться только инерциальными системами (не упоминая об этом каждый раз).

Системы отсчета, в которых первый закон Ньютона не выполняется, называют неинерциальным и .

К таким системам относится любая система отсчета, движущаяся с ускорением относительно инерциальной системы отсчета.

В механике Ньютона законы взаимодействия тел формулируются для класса инерциальных систем отсчета.

Примером механического эксперимента, в котором проявляется неинерциальность системы, связанной с Землей, служит поведение маятника Фуко . Так называется массивный шар, подвешенный на достаточно длинной нити и совершающий малые колебания около положения равновесия. Если бы система, связанная с Землей, была инерциальной, плоскость качаний маятника Фуко оставалась бы неизменной относительно Земли. На самом деле плоскость качаний маятника вследствие вращения Земли поворачивается, и проекция траектории маятника на поверхность Земли имеет вид розетки (рис. 1). Рис. 2

Литература

  1. Открытая физика 2.5 (http://college.ru/physics/)
  2. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.

Всякая система отсчёта, движущаяся по отношению к инерциальной системе отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Следовательно, теоретически может существовать любое число инерциальных систем отсчета.

В реальности система отсчёта всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается движение различных объектов. Так как все реальные тела движутся с тем или иным ускорением, любая реальная система отсчёта может рассматриваться как инерциальная система отсчета лишь с определенной степенью приближения. С высокой степенью точности инерциальной можно считать гелиоцентрическую систему, связанную с центром масс Солнечной системы и с осями, направленными на три далёкие звезды. Такая инерциальная система отсчета используется главным образом в задачах небесной механики и космонавтики. Для решения большинства технических задач инерциальной можно считать систему отсчета, жёстко связанную с Землёй.

Принцип относительности Галилея

Инерциальные системы отсчета обладают важным свойством, которое описывает принцип относительности Галилея :

  • всякое механическое явление при одних и тех же начальных условиях протекает одинаково в любой инерциальной системе отсчета.

Равноправие инерциальных систем отсчета, устанавливаемое принципом относительности, выражается в следующем:

  1. законы механики в инерциальных системах отсчета одинаковы. Это значит, что уравнение, описывающее некоторый закон механики, будучи выражено через координаты и время любой другой инерциальной системы отсчета, будет иметь один и тот же вид;
  2. по результатам механических опытов невозможно установить, покоится ли данная система отсчета или движется равномерно и прямолинейно. В силу этого ни одна из них не может быть выделена как преимущественная система, скорости движения которой мог бы быть придан абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости движения систем, так что любую систему можно признать условно неподвижной, а другую – движущейся относительно нее с определенной скоростью;
  3. уравнения механики неизменны по отношению к преобразованиям координат при переходе от одной инерциальной системы отсчета к другой, т.е. одно и тоже явление можно описать в двух разных системах отсчета внешне по-разному, но физическая природа явления остается при этом неизменной.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Система отсчета жестко связана с лифтом. В каких из приведенных ниже случаев систему отсчета можно считать инерциальной? Лифт: а) свободно падает; б) движется равномерно вверх; в) движется ускоренно вверх; г) движется замедленно вверх; д) движется равномерно вниз.
Ответ а) свободное падение – это движение с ускорением , поэтому систему отсчета, связанную с лифтом в данном случае нельзя считать инерциальной;

б) так как лифт движется равномерно, систему отсчета можно считать инерциальной;

Инерциальными системами отсчета называют такие системы, относительно которых все тела, не испытывающие действия сил, движутся равномерно и прямолинейно .

Если какая-либо система отсчета движется относительно инерциальной системы поступательно, но не прямолинейно и равномерно, а с ускорением или же вращаясь, то такая система не может быть инерциальной и закон инерции в ней не выполняется.

Во всех инерциальных системах отсчета все механические и физические процессы протекают совершенно одинаково (при одинаковых условиях).

Согласно принципу относительности, все инерциальные системы отсчета равноправны и все проявления законов физики в них выглядят одинаково, а записи этих законов в разных инерциальных системах отсчета имеют одинаковую форму.

Если в изотропном пространстве существует хотя бы одна инерциальная система отсчета , приходим к выводу, что существует бесконечное множество таких систем, движущихся друг относительно друга поступательно, равномерно и прямолинейно. Если инерциальные системы отсчета существуют, то пространство однородно и изотропно, а время - однородно.

Законы Ньютона и другие законы динамики выполняются только в инерциальных системах отсчета .

Рассмотрим пример инерциальной и неинерциальной систем. Возьмем тележку, на которой находятся два шарика. Один из них лежит на горизонтальной поверхности, а другой подвешен на нити. Сначала тележка движется относительно Земли прямолинейно и равномерно (а ). Силы, действующие на каждый шарик по вертикали, уравновешены, а по горизонтали на шарики никакие силы не действуют (силу сопротивления воздуха можно проигнорировать).

При любой скорости движения тележки относительно земли (υ 1 , υ 2 , υ 3 и т.д.) шарики будут находиться в покое относительно тележки, главное, чтобы скорость была постоянной.

Однако, когда тележка наедет на песчаную насыпь (б ), ее скорость начнет быстро уменьшаться, в результате чего тележка остановится. Во время торможения тележки оба шарика придут в движение - изменят свою скорость относительно тележки, хотя их никакие силы не толкают.

В этом примере первой (условно неподвижной) системой отсчета является Земля. Вторая система отсчета, движущаяся относительно первой - тележка. Пока тележка двигалась равномерно и прямолинейно, шарики находились в покое относительно тележки, т. е. выполнялся закон инерции. Как только тележка стала тормозить, т. е. начала двигаться с ускорением относительно инерциальной (первой) системы отсчета, закон инерции перестал выполняться.

Строго инерциальной системы отсчета нет. Реальная система отсчета всегда связывается с каким-нибудь конкретным телом, по отношению к которому изучается различных объектов. Все реальные тела движутся с каким-либо ускорением, следовательно любая реальная система отсчета может рассматриваться в качестве инерциальной лишь приближенно.

Инерциальной системой с очень высокой степенью точности считается гелиоцентрическая система, связанная с центром Солнца и координатными осями, направленными на три далекие звезды. Эту систему используют в задачах небесной механики и космонавтики. В большинстве технических задач инерциальной системой отсчета считают любую систему, жестко связанную с землей (или любым телом, которое покоится или движется прямолинейно и равномерно относительно поверхности Земли).

Инерциальная система отсчета (ИСО) - система отсчета, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешнии силы или действие этих сил компенсируется) движутся в них прямолинено и равномерно или покоятся в них.

Неинерциальная система отсчета - произвольная система отсчета, не являющаяся инерциальной. Всякая система отсчета, движущаяся с ускорением относительно инерциальной, является неинерциальной.

Первый закон Ньютона - существуют инерциальные системы отсчета, т. е. такие системы отсчета, в которых тело движется равномерно и прямолинейно, если другие тела на него не действуют. Основная роль этого закона − подчеркнуть, что в этих системах отсчета все ускорения, приобретаемые телами, являются следствиями взаимодействий тел. Дальнейшее описание движения следует проводить только в инерциальных системах отсчета.

Второй закон Ньютона утверждает, что причина ускорения тела − взаимодействие тел, характеристикой которого является сила. Этот закон дает основное уравнение динамики, позволяющее, в принципе, находить закон движения тела, если известны силы, действующие на него. Этот закон может быть сформулирован следующим образом (рис. 100):

ускорение точечного тела (материальной точки) прямо пропорционально сумме сил, действующих на тело, и обратно пропорционально массе тела :

здесь F − результирующая сила, то есть векторная сумма всех сил, действующих на тело. На первый взгляд, уравнение (1) является другой формой записи определения силы, данного в предыдущем разделе. Однако это не совсем так. Во-первых, закон Ньютона утверждает, что в уравнение (1) входит сумма всех сил, действующих на тело, чего нет в определении силы. Во-вторых, второй закон Ньютона однозначно подчеркивает, что сила является причиной ускорения тела, а не наоборот.  

Третий закон Ньютона подчеркивает, что причиной ускорения является взаимное действие тел друг на друга. Поэтому силы, действующие на взаимодействующие тела, являются характеристиками одного и того же взаимодействия. С этой точки зрения нет ничего удивительного в третьем законе Ньютона (рис. 101):

точечные тела (материальные точки) взаимодействуют с силами, равными по величине и противоположными по направлению и направленными вдоль прямой, соединяющей эти тела :

где F 12 − сила, действующая на первое тело со стороны второго, a F 21 − сила, действующая на второе тело со стороны первого. Очевидно, что эти силы имеют одинаковую природу. Этот закон также является обобщением многочисленных экспериментальных фактов. Обратим внимание, что фактически именно этот закон является основой определения массы тел, данного в предыдущем разделе.  

Уравнение движения материальной точки в неинерциальной системе отсчёта может быть представлено в виде :

где - масса тела, , - ускорение и скорость тела относительно неинерциальной системы отсчёта, - сумма всех внешних сил, действующих на тело, - переносное ускорение тела, - кориолисово ускорение тела, - угловая скорость вращательного движения неинерциальной системы отсчёта вокруг мгновенной оси, проходящей через начало координат, - скорость движения начала координат неинерциальной системы отсчёта относительно какой-либо инерциальной системы отсчёта.

Это уравнение может быть записано в привычной форме второго закона Ньютона , если ввести силы инерции :

В неинерциальных системах отсчета возникают силы инерции. Появление этих сил является признаком неинерциальности системы отсчета.